腐殖酸促进氯苯类物质厌氧还原脱氯研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on humic acid promoting anaerobic reduction dechlorination of chlorobenzenes
  • 作者:胡妍玢 ; 李东阳 ; 田蕴 ; 安喆 ; 李琦 ; 张萌 ; 杨天学
  • 英文作者:HU Yan-fen;LI Dong-yang;TIAN Yun;AN Zhe;LI Qi;ZHANG Meng;YANG Tian-xue;State Key Laboratory of Environmental Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences;School of Environmental and Chemical Engineering,Shanghai University;Division of Environmental Law Enforcement Research,Appraisal Center for Environment & Engineering Ministry of Ecology & Environment;
  • 关键词:腐殖酸 ; 氯苯 ; 厌氧脱氯
  • 英文关键词:humic acids;;chlorobenzene compounds;;anaerobic dechlorination
  • 中文刊名:HJSX
  • 英文刊名:Environmental Ecology
  • 机构:中国环境科学研究院环境基准与风险评估国家重点实验室;上海大学环境与化学工程学院;生态环境部环境工程评估中心执法部;
  • 出版日期:2019-06-15
  • 出版单位:环境生态学
  • 年:2019
  • 期:v.1
  • 语种:中文;
  • 页:HJSX201902019
  • 页数:6
  • CN:02
  • ISSN:10-1620/S
  • 分类号:92-97
摘要
氯苯类化合物(CBs)具有持久性和高生物毒性等环境危害,六氯苯(Hexachlorobenzene,HCB)为典型CBs之一,广泛存在于垃圾填埋场、湖泊底泥等厌氧环境中,对人类健康造成危害。研究表明厌氧条件下CBs物质能发生还原脱氯现象,且厌氧环境中存在的腐殖酸(humic acids,HA)能促进氯代物降解。通过分析HCB还原脱氯机理、HA氧化还原特性,以及厌氧条件下HA对氯苯类物质还原脱氯作用、腐殖酸还原微生物还原机制,以期为实现源头修复填埋场等厌氧环境中CBs类化合物污染环境提供调控原理。
        Chlorobenzene compounds( CBs) are environmental hazards with persistence and high biological toxicity.HCB is one of the typical CBs,it is widely used in anaerobic environments such as landfills and lake sediments which cause harm to human health.Studies have shown that CBs can undergo reductive dechlorination under anaerobic conditions,and humic acid( HA) in anaerobic environment can promote the degradation of chlorinated compounds.In this paper,the dechlorination mechanism of HCB,HA redox characteristics,the mechanism of HA on HCB reduction dechlorination under anaerobic conditions,and the reduction mechanism of HA reduction microorganisms were analyzed,which provided a regulation principle for remediation CBs environmental pollution in anaerobic environments such as source-controlled landfills.
引文
[1]方艺民,许玉东.垃圾渗滤液中微量有机物分类及其污染特性[J].能源与环境,2013(5):103-104.
    [2]REGADIO M,RUIZ A I,SOTO I S,et al.Pollution profiles and physicochemical parameters in old uncontrolled landfills[J].Waste Management,2012,32(3):482-497.
    [3]KLOKOV S V,LOKTEVA E S,GOLUBINA E V,et al.Effective Pd/C catalyst for chlorobenzene and hexachlorobenzene hydrodechlorination by direct pyrolysis of sawdust impregnated with palladium nitrate[J].Catalysis Communications,2016,77(5):37-41.
    [4]MIKHAIL A V,ILNAZ T R,ARTASHES A K,et al.Effect of halogen substitution on the enthalpies of solvation and hydrogen bonding of organic solutes in chlorobenzene and1,2-dichlorobenzene derived using multi-parameter correlations[J].Thermochimica Acta,2015,617(10):8-20.
    [5]NWAKAMMA A,KALPIT S,BEHDAD M,et al.Formation of chlorobenzenes by oxidative thermal decomposition of1,3-dichloropropene[J].Combustion and Flame,2015,162(6):2414-2421.
    [6]CAITLYN M M,DENNIS G P.Electrochemical dechlorination of 4,4'-(2,2,2-trichloroethane-1,1-diyl)bis(chlorobenzene)(DDT)at silver cathodes[J].Electrochimica Acta,2014,137(10):423-430.
    [7]INA O S,JENS P E B,GUNNAR T,et al.Environmental hexachlorobenzene exposure and human male reproductive function[J].Reproductive Toxicology,2015,58:8-14.
    [8]MAGGI C,AUSILI A,BOSCOLO R,et al.Sediment and biota in trend monitoring of contaminants in transitional waters[J].TrAC Trends in Analytical Chemistry,2012,36(7):82-91.
    [9]PENG Y Q,CHEN J H,LU S Y,et al.Chlorophenols in Municipal Solid Waste Incineration:a review[J].Chemical Engineering Journal,2016,292(15):398-414.
    [10]WU B Z,CHEN G Y,HWAKWANG Y,et al.Degradation of lindane and hexachlorobenzene in supercritical carbon dioxide using palladium nanoparticles stabilized in microcellular high-density polyethylene[J].Chemosphere,2016,152(7):345-352.
    [11]PEDRO A,PAULA V,TEREZA V,et al.Emission profiles of polychlorinated dibenzodioxins,polychlorinated dibenzofurans(PCDD/Fs),dioxin-like PCBs and hexachlorobenzene(HCB)from secondary metallurgy industries in Portugal[J].Chemosphere,2012,88(11):1332-1339.
    [12]黎冰,解启来,廖天,等.扎龙湿地表层沉积物有机氯农药的污染特征及风险评价[J].农业环境科学学报,2013,32(2):347-353.
    [13]王卿梅,何玘霜,王雁,等.巢湖悬浮物中有机氯农药的分布、来源与风险[J].湖泊科学,2014,26(6):887-896.
    [14]ZHANG H Y,WANG Y W,SUN C,et al.Levels and distributions of hexachlorobutadiene and three chlorobenzenes in biosolids from wastewater treatment plants and in soils within and surrounding a chemical plant in China[J].Environmental Science&Technology,2014,48(3):1525-1531.
    [15]WEBER R,WATSON A,FORTER M,et al.Review article:persistent organic pollutants and landfills-a review of past experiences and future challenges[J].Waste Management&Research,2011,29(1):107-121.
    [16]SAYALI S P,UTKARSHA U S,ADAM T,et al.Entitled to full text Nanoparticles for environmental clean-up:a review of potential risks and emerging solutions review[J].Environmental Technology&Innovation,2016,5:10-21.
    [17]SANTHI V A,MUSTAFA A M.Assessment of organochlorine pesticides and plasticisers in the Selangor River basin and possible pollution sources[J].Environmental Monitoring and Assessment,2013,185(2):1541-1554.
    [18]何连生,张旭,董军,等.简易垃圾填埋场对地下水污染的风险评估和管理技术研究[M].北京:中国环境出版社,2014.
    [19]XU Y,YU Y,GREGORY K B,et al.Comprehensive assessment of bacterial communities and analysis of PCBcongeners in PCB-contaminated sediment with depth[J].Journal of Environmental Engineering,2012,138(12):1167-1178.
    [20]HO C H,LIU S M.Effect of coplanar PCB concentration on dechlorinating microbial communities and dechlorination in estuarine sediments[J].Chemosphere,2011,82(1):48-55.
    [21]BRADLEY P M,CHAPELLE F H,LOVLEY D R.Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichioroethene[J].Applied and Environmental Microbiology,1998,64(8):3102-3105.
    [22]SUDJARID W,CHYAN,J M,ANOTAI J,et al.Potential hexachlorobenzene dechlorination by indigenous sediment consortia from thai canal[J].Fresenius Environmental Bulletin,2011,20(10a):1286-1292.
    [23]PAVEL T,ROMAIN D,LUDˇEK K,et al.Gaigneaux.Performance of platinum and gold catalysts supported on ceria-zirconia mixed oxide in the oxidation of chlorobenzene[J].Catalysis Today,2015,253(15):172-177.
    [24]AZNREZ A,DELAIGLE R,ELOY P,et al.Catalysts based on pillared clays for the oxidation of chlorobenzene[J].Catalysis Today,2015,246(15):15-27.
    [25]GUO W Q,GUO S,YIN R L,et al.Reduction of 4-chloronitrobenzene in a bioelectrochemical reactor with biocathode at ambient temperature for a long-term operation[J].Journal of the Taiwan Institute of Chemical Engineers,2015,46(6):119-124.
    [26]ZHU L,JIN J,LIN H Z,et al.Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater[J].Hazardous Materials,2015,285(21):157-166.
    [27]CHEN I M,CHANG Y F,LIN H.Microbial dechlorination of hexachlorobenzene by untamed sediment microorganisms in Taiwan[J].Practice Periodical of Hazardous,Toxic,and Radioactive Waste Management,2004,8(2):73-78.
    [28]NASCIMENTO M A,LOPES R P,CRUZ J C,et al.Sulfentrazone dechlorination by iron-nickel bimetallic nanoparticles[J].Environmental Pollution,2016,211:406-413.
    [29]YUAN S Y,SU C J,CHANG B V.Microbial dechlorination of hexachlorobenzene in anaerobic sewage sludge[J].Chemosphere,1999,38(5):1015-1023.
    [30]CHEN I M,CHANG Y F,LIN H.Microbial Dechlorination of hexachlorobenzene by untamed sediment microorganisms in Taiwan[J].Practice Periodical of Hazardous,Toxic,and Radioactive Waste Management,2004,8(2):73-78.
    [31]BRAHUSHI F,DRFLER U,SCHROLL R,et al.Stimulation of reductive dechlorination of hexachlorobenzene in soil by inducing the native microbial activity[J].Chemosphere,2004,55(11):1477-1484.
    [32]MATHEUS D R,BONONI V L R,MACHADO K M G.Biodegradation of hexachlorobenzene by basidiomycetes in soil contaminated with industrial residues[J].World Journal of Microbiology and Biotechnology,2000,16(5):415-421.
    [33]HIRANO T,ISHIDA T,OH K,et al.Biodegradation of chlordane and hexachlorobenzenes in river sediment[J].Chemosphere,2007,67(3):428-434.
    [34]陈朱蕾,蔡新美,张文静,等.六氯苯厌氧降解菌的筛选及其降解能力的研究[J].三峡大学学报:自然科学版,2007,28(6):548-551.
    [35]MAYUMI H,KATSUMI S,MOTOYUKI M.Reduction process of Cr(Ⅵ)by Fe(Ⅱ)and humic acid analyzed using high time resolution XAFS analysis[J].Hazardous Materials,2015,285(3):140-147.
    [36]李彬,吴山,梁金明,等.珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征[J].环境科学,2016,37(1):317-324.
    [37]CLAUDIO C,GIUSEPPE P,VINCENZO M S,et al.Stability of coprecipitated natural humic acid and ferrous iron under oxidative conditions[J].Geochemical Exploration,2015,151(4):50-56.
    [38]ORTEGA-GMEZ E,MARTN M M B,CARRATALA,et al.Principal parameters affecting virus inactivation by the solar photo-Fenton process at neutral p H andμM concentrations of H2O2and Fe2+/3+[J].Applied Catalysis B:Environmental,2015,174:395-402.
    [39]ROMO-RODRGUEZ P,ACEVEDO-AGUILAR F J,LOP-EZ-TORRES A,et al.Cr(Ⅵ)reduction by gluconolactone and hydrogen peroxide,the reaction products of fungal glucose oxidase:cooperative interaction with organic acids in the biotransformation of Cr(Ⅵ)[J].Chemosphere,2015,134:563-570.
    [40]LOVLEY,DEREK R.Organic matter mineralization with the reduction of ferric iron:a review[J].Geomicrobiology Journal,1987,5(3-4):375-399.
    [41]MINDERLEIN S,BLODAU C.Humic-rich peat extracts inhibit sulfate reduction,methanogenesis,and anaerobic respiration but not acetogenesis in peat soils of a temperate bog[J].Soil Biology Biochemistry,2010,42:2078-2086.
    [42]MARKUS B,TOBIAS H,MACALADY D L,et al.Electron transfer capacities and reaction kinetics of peat dissolved organic matter[J].Environmental Science&Technology,2007,41(1):139-145.
    [43]CERVANTES F J,MANCILLA A R,ROS-DEL TORO EE,et al.Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors[J].Journal of Hazardous Materials,2011,195:201-207.
    [44]LIU C Y,XU X H,FAN J L.Accelerated anaerobic dechlorination of DDT in slurry with Hydragric Acrisols using citric acid and anthraquinone-2,6-disulfonate(AQDS)[J].Journal of Environmental Sciences,2015,38(10):941-947.
    [45]MONTELIUS M,SVENSSON T,LOURINO-CABANA B,et al.Chlorination and dechlorination rates in a forest soil-Acombined modelling and experimental approach[J].Science of The Total Environment,2016,554(6):203-210.
    [46]KAPPLER A,BENZ M,SCHINK B,et al.Electron shuttling via humic acids in microbial iron(Ⅲ)reduction in a freshwater sediment[J].FEMS Microbiology Ecology,2004,47(1):85-92.
    [47]MINDERLEIN S,BLODAU C.Humic-rich peat extracts inhibit sulfate reduction,methanogenesis,and anaerobic respiration but not acetogenesis in peat soils of a temperate bog[J].Soil Biology and Biochemistry,2010,42(12):2078-2086.
    [48]MA C,ZHOU S G,LU Q,et al.Decolorization of orange Iunder alkaline and anaerobic conditions by a newly isolated humus-reducing bacterium,Planococcus sp.MC01[J].International Biodeterioration&Biodegradation,2013,83(9):17-24.
    [49]SCOTT D T,DIANE M M,BLUNT-HARRIS E L,et al.Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J].Environmental Science&Technology,1998,32(19):2984-2989.
    [50]HORI M,SHOZUGAWA K,MATSUO M.Reduction process of Cr(Ⅵ)by Fe(Ⅱ)and humic acid analyzed using high time resolution XAFS analysis[J].Journal of Hazardous Materials,2015,285(3):140-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700