基于非对称圆形谐振腔金属-介质-金属波导结构的带阻滤波器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Band-Stop Filter Based on Metal-Insulator-Metal Waveguide with Asymmetric Circular Resonant Cavities
  • 作者:肖功利 ; 窦婉滢 ; 杨宏艳 ; 韦清臣 ; 徐俊林 ; 杨秀华 ; 张开富 ; 杨寓婷 ; 李海鸥 ; 傅涛 ; 张法碧 ; 孙堂友
  • 英文作者:Xiao Gongli;Dou Wanying;Yang Hongyan;Wei Qingchen;Xu Junlin;Yang Xiuhua;Zhang Kaifu;Yang Yuting;Li Haiou;Fu Tao;Zhang Fabi;Sun Tangyou;Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology;School of Electronic Engineering and Automation,Guilin University of Electronic Technology;
  • 关键词:集成光学 ; 表面等离激元 ; 金属-介质-金属 ; 有限时域差分方法 ; 圆形谐振腔 ; 阻带宽度
  • 英文关键词:integrated optics;;surface plasmon polaritons;;metal-insulator-metal;;finite difference time domain method;;circular resonant cavity;;stopband width
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:桂林电子科技大学广西精密导航技术与应用重点实验室;桂林电子科技大学电子工程与自动化学院;
  • 出版日期:2019-01-25 13:01
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.446
  • 基金:国家自然科学基金(61465004,61765004);; 广西自然科学基金(2017GXNSFAA198164,2016GXNSFAA380006);; 桂林电子科技大学研究生教育创新计划(2017YJCX41,2019YCXS028);; 广西精密导航技术与应用重点实验室(DH201804,DH201703)
  • 语种:中文;
  • 页:GXXB201905027
  • 页数:7
  • CN:05
  • ISSN:31-1252/O4
  • 分类号:212-218
摘要
提出一种金属-介质-金属非对称圆形结构,该结构由两个圆形谐振腔、一个传输波导和两个耦合波导组成。利用谐振腔的局域作用加强表面等离激元的耦合作用,获得较大的透射率。采用有限时域差分方法研究了圆形谐振腔半径、个数和两圆腔中心距离对强透射特性的影响。结果表明,当非对称圆形谐振腔的半径为100nm、两圆间距为200nm时,该结构具有较高的透射率。通过优化主要参数,所设计结构的平均阻带宽度为1000nm,工作范围可增大到2500nm。
        Herein,a metal-insulator-metal asymmetric circular structure comprising two circular cavities,a transmission waveguide,and two coupled waveguides is proposed.The coupling effect of surface plasmon polaritons is strengthened through the local effect of resonant cavities,and a good extraordinary transmission is obtained.The effects of the radii and number of circular resonant cavities and that of the inter-circle distance on such an extraordinary transmission are investigated via the finite difference time domain method.The results show that in the case that the radius of the circular resonant cavity resonator and the inter-circle distance are 100 nm and 200 nm,respectively,the structure exhibits a very good extraordinary transmission.The optimization of these main parameters could allow an average stopband width of 1000 nm and increase the working range up to 2500 nm.
引文
[1]Ebbesen T W,Lezec H J,Ghaemi H F,et al.Extraordinary optical transmission through subwavelength hole arrays[J].Nature,1998,391(6668):667-669.
    [2]Barnes W L,Dereux A,Ebbesen T W.Surface plasmon subwavelength optics[J].Nature,2003,424(6950):824-830.
    [3]Gramotnev D K,Bozhevolnyi S I.Plasmonics beyond the diffraction limit[J].Nature Photonics,2010,4(2):83-91.
    [4]Wang X L,Wang P,Chen C C,et al.Active modulation of plasmonic signal with a subwavelength metal/nonlinear dielectric material/metal structure[J].Chinese Optics Letters,2010,8(6):584-587.
    [5]Ozbay E.Plasmonics:merging photonics and electronics at nanoscale dimensions[J].Science,2006,311(5758):189-193.
    [6]Lee T W,Gray S K.Subwavelength light bending by metal slit structures[J].Optics Express,2005,13(24):9652.
    [7]Pang S F,Zhang Y Y,Huo Y P,et al.The filter characteristic research of metal-insulator-metal waveguide with double overlapping annular rings[J].Plasmonics,2015,10(6):1723-1728.
    [8]Wang H Q,Yang J B,Zhang J J,et al.Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure[J].Optics Letters,2016,41(6):1233-1236.
    [9]Duan G Y,Lang P L,Wang L L,et al.A band-pass plasmonic filter with dual-square ring resonator[J].Modern Physics Letters B,2014,28(23):1450188.
    [10]Veronis G,Yu Z F,Kocabas S E,et al.Metaldielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale[J].Chinese Optics Letters,2009,7(4):302-308.
    [11]Veronis G,Fan S H.Bends and splitters in metaldielectric-metal subwavelength plasmonic waveguides[J].Applied Physics Letters,2005,87(13):131102.
    [12]Zhang Z,Shi F H,Chen Y H.Tunable multichannel plasmonic filter based on coupling-induced mode splitting[J].Plasmonics,2015,10(1):139-144.
    [13]Gao H T,Shi H F,Wang C T,et al.Surface plasmon polariton propagation and combination in Y-shaped metallic channels[J].Optics Express,2005,13(26):10795.
    [14]Bozhevolnyi S I,Volkov V S,Devaux E,et al.Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J].Nature,2006,440(7083):508-511.
    [15]Wang B,Wang G P.Plasmon Bragg reflectors and nanocavities on flat metallic surfaces[J].Applied Physics Letters,2005,87(1):013107.
    [16]Park J,Kim H,Lee B.High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating[J].Optics Express,2008,16(1):413.
    [17]Hossieni A,Massoud Y.A low-loss metal-insulatormetal plasmonic Bragg reflector[J].Optics Express,2006,14(23):11318-11323.
    [18]Chen Y L,Xu J,Shi N N,et al.Mode properties of metal-insulator-metal waveguide Bragg grating[J].Acta Optica Sinica,2017,37(11):1123002陈奕霖,许吉,时楠楠,等.金属-介质-金属波导布拉格光栅的模式特性[J].光学学报,2017,37(11):1123002
    [19]Gan Q,Ding Y J,Bartoli F J.“Rainbow”trapping and releasing at telecommunication wavelengths[J].Physical Review Letters,2009,102(5):056801.
    [20]Wang T B,Wen X W,Yin C P,et al.The transmission characteristics of surface plasmon polaritons in ring resonator[J].Optics Express,2009,17(26):24096-24101.
    [21]Xiao G L,Xu J L,Yang H Y,et al.A plasmon multi-channel wavelength-division multiplexer constructed with a nanodisk structure embedded in a rectangular metal block[J].Acta Optica Sinica,2018,38(12):1206006.肖功利,徐俊林,杨宏艳,等.内嵌矩形金属块纳米圆盘结构等离子体多通道波分复用器研究[J].光学学报,2018,38(12):1206006.
    [22]Zheng G,Su W,Chen Y,et al.Band-stop filters based on a coupled circular ring metal-insulator-metal resonator containing nonlinear material[J].Journal of Optics,2012,14(5):055001.
    [23]Wang S W,Li Y,Xu Q J,et al.A MIM filter based on a side-coupled crossbeam square-ring resonator[J].Plasmonics,2016,11(5):1291-1296.
    [24]Zheng M F,Li H J,Chen Z Q,et al.Compact and multiple plasmonic nanofilter based on ultra-broad stopband in partitioned semicircle or semiring stub waveguide[J].Optics Communications,2017,402:47-51.
    [25]Wu T S,Liu Y M,Yu Z Y,et al.The sensing characteristics of plasmonic waveguide with a ring resonator[J].Optics Express,2014,22(7):7669-7677.
    [26]Zhan G Z,Liang R S,Liang H T,et al.Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities[J].Optics Express,2014,22(8):9912-9919.
    [27]Xiao G L,Liu L,Yang H Y,et al.Light transmission characteristics of metal curved waveguide based on microcavity coupling structures[J].Acta Optica Sinica,2017,37(12):1213001.肖功利,刘利,杨宏艳,等.基于微腔耦合结构金属弯曲波导的光透射特性[J].光学学报,2017,37(12):1213001.
    [28]Gong Y K,Liu X M,Wang L R.High-channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings[J].Optics Letters,2010,35(3):285-287.
    [29]Zhu J H,Huang X G,Tao J,et al.Nanometeric plasmonic refractive index senor[J].Optics Communications,2012,285(13/14):3242-3245.
    [30]Lin X S,Huang X G.Tooth-shaped plasmonic waveguide filters with nanometeric sizes[J].Optics Letters,2008,33(23):2874-2876.
    [31]Han Z H,Forsberg E,He S L.Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides[J].IEEE Photonics Technology Letters,2007,19(2):91-93.
    [32]Chen X,Zhang R,Lang P L,et al.Transmittance spectrum of surface plasmon polariton based filter with asymmetric double-ring resonator and switch[J].Journal of Modern Optics,2014,61(9):716-720.
    [33]Wang Z S,Zhang G M,Liu H R,et al.Design of the aperture coupled multi-functional asymmetric semi-circular cavity filter based on surface plasmonpolaritons[J].Acta Photonica Sinica,2018,47(4):0423003.王志爽,张冠茂,刘海瑞,等.基于表面等离子激元的口径耦合多功能非对称半圆腔滤波器设计[J].光子学报,2018,47(4):0423003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700