食品加工技术对生物活性多糖结构和功能特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Food Processing Technologies on the Structural and Functional Properties of Bioactive Polysaccharides
  • 作者:聂少平 ; 施晓丹
  • 英文作者:Nie Shaoping;Shi Xiaodan;State Key Laboratory of Food Science and Technology, Nanchang University;
  • 关键词:食品加工技术 ; 多糖 ; 结构 ; 功能特性
  • 英文关键词:food processing technology;;polysaccharides;;structural properties;;functional properties
  • 中文刊名:ZGSP
  • 英文刊名:Journal of Chinese Institute of Food Science and Technology
  • 机构:食品科学与技术国家重点实验室;
  • 出版日期:2016-11-30
  • 出版单位:中国食品学报
  • 年:2016
  • 期:v.16
  • 基金:国家自然科学基金-优秀青年科学基金项目(31422042);; 江西省高等学校科技落地计划项目(KJLD13004)
  • 语种:中文;
  • 页:ZGSP201611002
  • 页数:8
  • CN:11
  • ISSN:11-4528/TS
  • 分类号:14-21
摘要
食品加工是保障食品安全,延长食品货架期的必要手段。不同加工技术的应用对食品中的营养成分产生不同的影响。多糖是各类食品原料中大量存在的一类活性物质,本文综述了传统食品加工技术,如脱水加工、热加工以及超声、高压、微波等新技术对生物活性多糖结构和功能特性的影响。
        Food processing or food manufacturing is the necessary means to ensure food safety and extend shelf life of food. Application of different processing technologies may have different effects on the nutritional components in food.Polysaccharides are one of the most bioactive components widely distributing in various kinds of food materials. In the current paper, effect of traditional food processing technologies(dehydration and thermal processing) and new technologies(ultrasound, high pressure and microwave) on the structral and functional properties of polysaccharides were reviewed.
引文
[1]Wijesinghe W,Jeon YJ.Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds:A review[J].Carbohydrate Polymers,2012,88(1):13-20.
    [2]Giavasis I.Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals[J].Current Opinion in Biotechnology,2014,26:162-173.
    [3]Liu J,Willf觟r S,Xu C.A review of bioactive plant polysaccharides:Biological activities,functionalization,and biomedical applications[J].Bioactive Carbohydrates and Dietary Fibre,2015,5(1):31-61.
    [4]谢明勇,聂少平.天然产物活性多糖结构与功能研究进展[J].中国食品学报,2010,10(2):1-11.
    [5]Wu Z.Effect of different drying methods on chemical composition and bioactivity of finger citron polysaccharides[J].International Journal of Biological Macromolecules,2015,76:218-223.
    [6]徐洲,刘静,冯士令,等.不同干燥方法对淫羊藿多糖化学性质和抗氧化活性的影响[J].食品工业科技,2015,36(19):116-119.
    [7]刘继婷,鲁晓丽,张自萍.不同处理方法对贺兰山紫蘑菇多糖抗氧化活性的影响[J].食品科学,2015,36(4):6-10.
    [8]吴振,李红,罗杨,等.不同干燥方式对银耳多糖理化特性及抗氧化活性的影响[J].食品科学,2014,35(13):93-97.
    [9]黄菲,郭亚娟,张瑞芬,等.不同干制方式的荔枝多糖理化特性和抗氧化活性比较[J].中国食品学报,2016,16(3):212-218.
    [10]Li S,Shah NP.Characterization,antioxidative and bifidogenic effects of polysaccharides from Pleurotus eryngii after heat treatments[J].Food Chemistry,2016,197:240-249.
    [11]张赛男.不同干燥方法对金线莲多糖含量的影响[J].中药与临床,2015(2):8-10.
    [12]Zhao Q,Dong B,Chen J,et al.Effect of drying methods on physicochemical properties and antioxidant activities of wolfberry(Lycium barbarum)polysaccharide[J].Carbohydrate Polymers,2015,127:176-181.
    [13]Nep EI,Conway BR.Physicochemical characterization of grewia polysaccharide gum:Effect of drying method[J].Carbohydrate Polymers,2011,84(1):446-453.
    [14]吕洁丽,陈红丽,段金廒,等.不同加工方法对当归多糖的影响[J].中国中药杂志,2011,36(7):846-849.
    [15]Liepins J,Kovac姚ova E,Shvirksts K,et al.Drying enhances immunoactivity of spent brewer’s yeast cell wallβ-dglucans[J].Journal of Biotechnology,2015,206:12-16.
    [16]Lo CM,Grün IU,Taylor TA,et al.Blanching effects on the chemical composition and the cellular distribution of pectins in carrots[J].Journal of Food Science,2002,67(9):3321-3328.
    [17]Geerkens CH,Nagel A,Just KM,et al.Mango pectin quality as influenced by cultivar,ripeness,peel particle size,blanching,drying,and irradiation[J].Food Hydrocolloids,2015,51:241-251.
    [18]Bao B,Chang KC.Carrot pulp chemical composition,color,and water‐holding capacity as affected by blanching[J].Journal of Food Science,1994,59(6):1159-1161.
    [19]Latorre ME,de Escalada PláMF,Rojas AM,et al.Blanching of red beet(Beta vulgaris L.var.conditiva)root.Effect of hot water or microwave radiation on cell wall characteristics[J].LWT-Food Science and Technology,2013,50(1):193-203.
    [20]Zhao W,Xie W,Du S,et al.Changes in physicochemical properties related to the texture of lotus rhizomes subjected to heat blanching and calcium immersion[J].Food Chemistry,2016,211:409-414.
    [21]Svanberg SJM,Gustafsson KBH,Suortti T,et al.Molecular weight distribution,measured by HPSEC,and viscosity of water-soluble dietary fiber in carrots following different types of processing[J].Journal of Agricultural and Food Chemistry,1995,43(10):2692-2697.
    [22]Nyman EMGL,Svanberg SJ,Asp NGL.Molecular weight distribution and viscosity of water‐soluble dietary fibre isolated from green beans,brussels sprouts and green peas following different types of processing[J].Journal of the Science of Food and Agriculture,1994,66(1):83-91.
    [23]Radzki W,Ziaja-So覥tys M,Nowak J,et al.Effect of processing on the content and biological activity of polysaccharides from Pleurotus ostreatus mushroom[J].LWT-Food Science and Technology,2016,66:27-33.
    [24]Rodríguez-González VM,Femenia A,González-Laredo RF,et al.Effects of pasteurization on bioactive polysaccharide acemannan and cell wall polymers from Aloe barbadensis Miller[J].Carbohydrate Polymers,2011,86(4):1675-1683.
    [25]Rodríguez-González VM,Femenia A,Minjares-Fuentes R,et al.Functional properties of pasteurized samples of Aloe barbadensis Miller:Optimization using response surface methodology[J].LWT-Food Science and Technology,2012,47(2):225-232.
    [26]Stolle-Smits T,Beekhuizen JG,van Dijk C,et al.Cell wall dissolution during industrial processing of green beans(Phaseolus vulgaris L.)[J].Journal of Agricultural and Food Chemistry,1995,43(9):2480-2486.
    [27]Stolle-Smits T,Beekhuizen JG,Recourt K,et al.Changes in pectic and hemicellulosic polymers of green beans(Phaseolus vulgaris L.)during industrial processing[J].Journal of Agricultural and Food Chemistry,1997,45(12):4790-4799.
    [28]K觟k MS,Hill SE,Mitchell JR.Viscosity of galactomannans during high temperature processing:influence of degradation and solubilisation[J].Food Hydrocolloids,1999,13(6):535-542.
    [29]Ka c姚ík F,S姚míra P,Ka c姚íkováD,et al.Chemical alterations of pine wood saccharides during heat sterilisation[J].Carbohydrate Polymers,2015,117:681-686.
    [30]de Oliveira FC,Coimbra JSR,de Oliveira EB,et al.Food protein-polysaccharide conjugates obtained via the maillard reaction:A review[J].Critical Reviews in Food Science and Nutrition,2016,56(7):1108-1125.
    [31]Jiang J,Chen J,Xiong YL.Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline p H-shifting processes[J].Journal of Agricultural and Food Chemistry,2009,57(16):7576-7583.
    [32]Spotti MJ,Perduca MJ,Piagentini A,et al.Gel mechanical properties of milk whey protein-dextran conjugates obtained by Maillard reaction[J].Food Hydrocolloids,2013,31(1):26-32.
    [33]Kasran M,Cui SW,Goff HD.Covalent attachment of fenugreek gum to soy whey protein isolate through natural Maillard reaction for improved emulsion stability[J].Food Hydrocolloids,2013,30(2):552-558.
    [34]Du Y,Shi S,Jiang Y,et al.Physicochemical properties and emulsion stabilization of rice dreg glutelin conjugated withκ‐carrageenan through Maillard reaction[J].Journal of the Science of Food and Agriculture,2013,93(1):125-133.
    [35]Mu L,ZHao H,ZHao M,et al.Physicochemical properties of soy protein isolates-acacia gum conjugates[J].Czech J Food Sci,2011,29(2):129-136.
    [36]Knorr D,Zenker M,Heinz V,et al.Applications and potential of ultrasonics in food processing[J].Trends in Food Science&Technology,2004,15(5):261-266.
    [37]马晓彬,张丽芬,徐玉亭,等.多糖超声物理改性的研究进展[J].中国食品学报,2015,15(10):163-169.
    [38]Bagherian H,Ashtiani FZ,Fouladitajar A,et al.Comparisons between conventional,microwave-and ultrasound-assisted methods for extraction of pectin from grapefruit[J].Chemical Engineering and Processing:Process Intensification,2011,50(11):1237-1243.
    [39]Zhang L,Zhang X,Liu D,et al.Effect of degradation methods on the structural properties of citrus pectin[J].LWT-Food Science and Technology,2015,61(2):630-637.
    [40]Zhang L,Ye X,Xue SJ,et al.Effect of high-intensity ultrasound on the physicochemical properties and nanostructure of citrus pectin[J].Journal of the Science of Food and Agriculture,2013,93(8):2028-2036.
    [41]Zhang L,Ye X,Ding T,et al.Ultrasound effects on the degradation kinetics,structure and rheological properties of apple pectin[J].Ultrasonics Sonochemistry,2013,20(1):222-231.
    [42]Guo X,Ye X,Sun Y,et al.Ultrasound effects on the degradation kinetics,structure,and antioxidant activity of sea cucumber fucoidan[J].Journal of Agricultural and Food Chemistry,2014,62(5):1088-1095.
    [43]Peres GL,Leite DC,Silveira NP.Ultrasound effect on molecular weight reduction of amylopectin[J].Starch‐St覿rke,2015,67(5/6):407-414.
    [44]Yan JK,Pei JJ,Ma HL,et al.Effects of ultrasound on molecular properties,structure,chain conformation and degradation kinetics of carboxylic curdlan[J].Carbohydrate Polymers,2015,121:64-70.
    [45]柴文博,陈芳.超高压技术及其在中式菜肴杀菌中的应用[J].中国食品学报,2015,12(12):152-159.
    [46]Norton T,Sun DW.Recent advances in the use of high pressure as an effective processing technique in the food industry[J].Food and Bioprocess Technology,2008,1(1):2-34.
    [47]Mc Inerney JK,Seccafien CA,Stewart CM,et al.Effects of high pressure processing on antioxidant activity,and total carotenoid content and availability,in vegetables[J].Innovative Food Science&Emerging Technologies,2007,8(4):543-548.
    [48]Vega-Gálvez A,Miranda M,Nu觡ez-Mancilla Y,et al.Influence of high hydrostatic pressure on quality parameters and structural properties of aloe vera gel(Aloe barbadensis Miller)[J].Journal of Food Science and Technology,2014,51(10):2481-2489.
    [49]Vega-Gálvez A,Miranda M,Aranda M,et al.Effect of high hydrostatic pressure on functional properties and quality characteristics of Aloe vera gel(Aloe barbadensis Miller)[J].Food Chemistry,2011,129(3):1060-1065.
    [50]Scala KD,Vega-Gálvez A,Ah-Hen K,et al.Chemical and physical properties of aloe vera(Aloe barbadensis Miller)gel stored after high hydrostatic pressure processing[J].Food Science and Technology(Campinas),2013,33(1):52-59.
    [51]Moreno HM,Herranz B,Borderías AJ,et al.Effect of high pressure treatment on the structural,mechanical and rheological properties of glucomannan gels[J].Food Hydrocolloids,2016,60:437-444.
    [52]Peng X,Mu T,Zhang M,et al.Effects of p H and high hydrostatic pressure on the structural and rheological properties of sugar beet pectin[J].Food Hydrocolloids,2016,60:161-169.
    [53]Kim YK,Iwahashi H.Properties of polysaccharides extracted from Phellinus linteus using high hydrostatic pressure processing and hot water treatment[J].Journal of Food Process Engineering,2015,38(2):197-206.
    [54]Park K,Cho E,In MJ,et al.Physicochemical properties and bioactivity of brown seaweed fucoidan prepared by ultra high pressure-assisted enzyme treatment[J].Korean Journal of Chemical Engineering,2012,29(2):221-227.
    [55]陈军,戴涛涛,刘成梅,等.动态高压微射流在食品大分子改性方面的应用[J].中国农业科技导报,2015,17(5):106-113.
    [56]李亚楠,刘红芝,刘丽,等.动态高压微射流处理过程对多糖结构与理化性质的影响研究进展[J].食品科学,2015,36(7):211-215.
    [57]Silvestri S,Gabrielson G.Degradation of tragacanth by high shear and turbulent forces during microfluidization[J].International Journal of Pharmaceutics,1991,73(2):163-169.
    [58]Villay A,de Filippis FL,Picton L,et al.Comparison of polysaccharide degradations by dynamic high-pressure homogenization[J].Food Hydrocolloids,2012,27(2):278-286.
    [59]Porto BC,Augusto PED,Terekhov A,et al.Effect of dynamic high pressure on technological properties of cashew tree gum(Anacardium occidentale L.)[J].Carbohydrate Polymers,2015,129:187-193.
    [60]Gulrez SKH,Al-Assaf S,Fang Y,et al.Revisiting the conformation of xanthan and the effect of industrially relevant treatments[J].Carbohydrate Polymers,2012,90(3):1235-1243.
    [61]Laneuville SI,Turgeon SL,Paquin P.Changes in the physical properties of xanthan gum induced by a dynamic high-pressure treatment[J].Carbohydrate Polymers,2013,92(2):2327-2336.
    [62]Eren NM,Santos PHS,Campanella O.Mechanically modified xanthan gum:Rheology and polydispersity aspects[J].Carbohydrate Polymers,2015,134:475-484.
    [63]Harte F,Venegas R.A model for viscosity reduction in polysaccharides subjected to high‐pressure homogenization[J].Journal of Texture Studies,2010,41(1):49-61.
    [64]Al-Assaf S,Sakata M,Mc Kenna C,et al.Molecular associations in acacia gums[J].Structural Chemistry,2009,20(2):325-336.
    [65]Liu H,Li Y,Gao J,et al.Effects of microfluidization with ionic liquids on the solubilization and structure ofβ-d-glucan[J].International Journal of Biological Macromolecules,2016,84:394-401.
    [66]章文琴,刘成梅,刘伟,等.动态高压微射流技术对可溶性大豆多糖结构的影响[J].食品科学,2010,31(9):30-34.
    [67]Chen J,Liang RH,Liu W,et al.Degradation of high-methoxyl pectin by dynamic high pressure microfluidization and its mechanism[J].Food Hydrocolloids,2012,28(1):121-129.
    [68]Hu JL,Nie SP,Xie MY.High pressure homogenization increases antioxidant capacity and short-chain fatty acid yield of polysaccharide from seeds of Plantago asiatica L[J].Food Chemistry,2013,138(4):2338-2345.
    [69]Rostami H,Gharibzahedi SMT.Microwave-assisted extraction of jujube polysaccharide:Optimization,purification and functional characterization[J].Carbohydrate Polymers,2016,143:100-107.
    [70]Tsubaki S,Oono K,Hiraoka M,et al.Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp.and Monostroma latissimum[J].Food Chemistry,2016,210:311-316.
    [71]苏瑛,刘鹏举,李丽梅,等.微波辅助提取淫羊藿多糖工艺条件及抑菌效果的研究[J].食品科技,2011,36(11):158-161.
    [72]郭庆启,张娜,张岭.微波辅助提取仙人掌多糖工艺条件及抑菌效果的研究[J].中国调味品,2010,35(10):97-99.
    [73]王娅玲,李维峰,郭芬,等.微波辅助提取菱红菇多糖及抗氧化活性研究[J].食品工业科技,2015,36(9):251-254.
    [74]卫强,江敦清,纪小影,等.微波辅助提取垂丝海棠花中多糖及其抗氧化研究[J].食品工业科技,2015,36(3):137-141.
    [75]Felkai-Haddache L,Remini H,Dulong V,et al.Conventional and microwave-assisted extraction of mucilage from Opuntia ficus-indica cladodes:physico-chemical and rheological properties[J].Food and Bioprocess Technology,2016,9(3):481-492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700