基于DMD方法的超声速进气道喘振特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics investigation on supersonic inlet buzz with dynamic mode decomposition method
  • 作者:代珂 ; 郭峰 ; 朱剑锋 ; 尤延铖
  • 英文作者:DAI Ke;GUO Feng;ZHU Jianfeng;YOU Yancheng;School of Aerospace Engineering,Xiamen University;
  • 关键词:超声速进气道 ; 喘振 ; 动力模态分解 ; 压力振荡 ; 稳定性
  • 英文关键词:supersonic inlet;;buzz;;dynamic mode decomposition;;pressure oscillation;;stability
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:厦门大学航空航天学院;
  • 出版日期:2019-05-07
  • 出版单位:航空动力学报
  • 年:2019
  • 期:v.34
  • 基金:装发预研领域基金(61402060301);; 航空动力基金(6141B090308);; 中央高校基本科研业务费(20720170059);; 福建省自然科学基金(2016J06011)
  • 语种:中文;
  • 页:HKDI201905013
  • 页数:9
  • CN:05
  • ISSN:11-2297/V
  • 分类号:123-131
摘要
采用非定常数值仿真方法对典型超声速进气道的喘振现象进行了研究,并引入动力模态分解(DMD)方法对小喘和大喘流动特性进行了分析,获取了小喘及大喘的流场振荡特征,其中DMD得到的1阶模态反映了时均流场特征、2阶模态反映了主频振荡流场特性。在此基础上,针对小喘与大喘的相互关系进行了研究,结果表明:进气道内小喘流动包含大喘的流场振荡特性,小喘状态是进气道由不喘到大喘状态的中间状态,由小喘向大喘演化过程中,进气道内一些流动特征逐渐减弱并趋于稳定收敛,大喘的流场结构整体上比小喘状态更为稳定。
        Buzz phenomena of a typical supersonic inlet were studied with numerical simulations.The dynamic mode decomposition(DMD)method was introduced to analyze the flow characteristics of the little buzz and big buzz.The first order dynamic mode reflected the time-averaged flow field characteristics,and the second order dynamic mode showed the flow field features of the main frequency oscillation.In addition,the research on the relationship between little buzz and big buzz reveals that the flow of little buzz contains the oscillation characteristics of the big buzz,and little buzz regime is a transitional state from the steady flow field to the big buzz regime.During the evolution from the little buzz to the big buzz,some flow structures in the inlet are gradually weakened and tend to be stable,hence the overall flow field of the big buzz is more stable than that of the little buzz.
引文
[1]CHANG Juntao,LI Nan,XU Kejing,et al.Recent research progress on unstart mechanism,detection and control of hypersonic inlet[J].Progress in Aerospace Sciences,2017,89:1-22.
    [2]MCCLINTON C R,HUNT J L.Airbreathing hypersonic technology vision vehicles and development dreams[R].AIAA 99-4978,1999.
    [3]TAN Huijun,GUO Rongwei.Experimental study of the unstable-unstarted condition of a hypersonic inlet at Mach6[J].Journal of Propulsion and Power,2007,23(4):783-788.
    [4]OSWATITSCH K.Pressure recovery for missiles with reaction propulsion at high supersonic speeds:the efficiency of shock diffusers[R].National Advisory Committee for Aeronautics,NACA TM-1140,1944.
    [5]FISHER S A,NEALE M C,BROOKS A J.On the subcritical stability of variable ramp intakes at Mach numbers around 2[R].National Gas Turbine Establishment Report ARC-R/M-3711,1970.
    [6]NAGASHIMA T,OBOKATA T,ASANUMA T.Experiment of supersonic air intake buzz[J].ISAS Report,1972,37(7):165-209.
    [7]TRAPIER S,DUVEAU P,DECK S.Experimental study of supersonic inlet buzz[J].AIAA Journal,2006,44(10):2354-2365.
    [8]TRAPIER S,DECK S,DUVEAU P.Delayed detachededdy simulation and analysis of supersonic inlet buzz[J].AIAA Journal,2008,46(1):118-131.
    [9]LEE H J,LEE B J,KIM S D,et al.Flow characteristics of small-sized supersonic inlets[J].Journal of Propulsion and Power,2011,27(2):306-318.
    [10]SOLTANI M R,SEPAHI-YOUNSI J.Buzz cycle description in an axisymmetric mixed-compression air intake[J].AIAA Journal,2016,54(3):1040-1053.
    [11]CHEN Hao,TAN Huijun,ZHANG Qifan,et al.Buzz flows in an external-compression inlet with partially isentropic compression[J].AIAA Journal,2017,55(12):4288-4295.
    [12]CHEN Hao,TAN Huijun,ZHANG Qifan,et al.Throttling process and buzz mechanism of a supersonic inlet at overspeed mode[J].AIAA Journal,2018,56(5):1953-1964.
    [13]FERRI A,NUCCI L M.The origin of aerodynamic instability of supersonic inlets at subcritical conditions[R].National Advisory Committee for Aeronautics,NACA-RM-L50K30,1951.
    [14]DAILEY C L.Supersonic diffuser instability[J].Journal of the Aeronautical Sciences,1955,22(11):733-749.
    [15]NEWSOME R W.Numerical simulation of near-critical and unsteady,subcritical inlet flow[J].AIAA Journal,1984,22(10):1375-1379.
    [16]LU P J,JAIN L T.Numerical investigation of inlet buzz flow[J].Journal of Propulsion and Power,1998,14(1):90-100.
    [17]SCHMID P J.Dynamic mode decomposition of numerical and experimental data[J].Journal of Fluid Mechanics,2010,656(10):5-28.
    [18]SEENA A,SUNG H J.Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations[J].International Journal of Heat and Fluid Flow,2011,32(6):1098-1110.
    [19]MARIAPPAN S,GARDNER A D,RICHTER K,et al.Analysis of dynamic stall using dynamic mode decomposition technique[J].AIAA Journal,2014,52(11):2427-2439.
    [20]WAN Zhenhua,ZHOU Lin,WANG Bofu,et al.Dynamic mode decomposition of forced spatially developed transitional jets[J].European Journal of Mechanics:B/Fluids,2015,51:16-26.
    [21]MOHAN A T,GAITONDE D V.Analysis of airfoil stall control using dynamic mode decomposition[J].Journal of Aircraft,2017,54(4):1508-1520.
    [22]LRUSSON R,ANDERSSON N,STLUND J.Dynamic mode decomposition of a separated nozzle flow with transonic resonance[J].AIAA Journal,2017,55(4):1-12.
    [23]BONFIGLIOLI A,PACIORRI R.Convergence analysis of shock-capturing and shock-fitting solutions on unstructured grids[J].AIAA Journal,2014,52(7):1404-1416.
    [24]ROWLEY C W,MEZIC I,BAGHERI S,et al.Spectral analysis of nonlinear flows[J].Journal of Fluid Mechanics,2009,641:115-127.
    [25]SCHMID P J,LI L,JUNIPER M P,et al.Applications of the dynamic mode decomposition[J].Theoretical and Computational Fluid Dynamics,2011,25(1/2/3/4):249-259.
    [26]RUHE A.Rational Krylov sequence methods for eigenvalue computation[J].Linear Algebra and Its Applications,1984,58:391-405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700