适用于背靠背柔性直流输电的双环附加频率控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dual-loop supplementary frequency control for BTB-VSC-HVDC
  • 作者:曾令康 ; 李大虎 ; 姚伟 ; 孙建波 ; 刘佳 ; 文劲宇
  • 英文作者:ZENG Lingkang;LI Dahu;YAO Wei;SUN Jianbo;LIU Jia;WEN Jinyu;State Key Laboratory of Advanced Electromagnetic Engineering and Technology,Huazhong University of Science and Technology;State Grid Hubei Electric Power Company;School of Electrical and Electronic Engineering,Hubei University of Technology;School of Information Engineering,Wuhan University of Technology;
  • 关键词:背靠背柔性直流输电 ; 异步联网 ; 频率控制 ; 频率支撑
  • 英文关键词:BTB-VSC-HVDC;;asynchronous interconnection;;frequency control;;frequency support
  • 中文刊名:DLZS
  • 英文刊名:Electric Power Automation Equipment
  • 机构:华中科技大学电气与电子工程学院强电磁工程与新技术国家重点实验室;国网湖北省电力公司;湖北工业大学电气与电子工程学院;武汉理工大学信息工程学院;
  • 出版日期:2018-12-07 17:28
  • 出版单位:电力自动化设备
  • 年:2018
  • 期:v.38;No.296
  • 基金:国家重点基础研究发展计划(973计划)资助项目(2014CB247400);; 国家自然科学基金资助项目(51577075)~~
  • 语种:中文;
  • 页:DLZS201812017
  • 页数:9
  • CN:12
  • ISSN:32-1318/TM
  • 分类号:119-126+133
摘要
通过背靠背柔性直流输电(BTB-VSC-HVDC)实现异步互联的2个交流系统之间缺乏相互支援的能力,使得各交流系统的频率响应特性下降。为了应对该问题,在理论分析柔性直流输电系统实施附加频率控制(SFC)的可行性的基础上,提出了一种适用于BTB-VSC-HVDC系统的双环SFC策略,使未受扰动端系统参与受扰动端系统的频率响应,实现两端交流系统的相互频率支撑。所提双环SFC策略中,通过在定有功功率控制环上增加频率-有功附加控制为受扰动系统提供频率支撑,改善频率响应的稳态特性;通过在定无功功率控制环上增加频率-无功附加控制以提供虚拟惯量支撑,改善频率响应的暂态特性。分别在含BTB-VSCHVDC的4机2区域系统和含有渝鄂BTB-VSC-HVDC的实际电网等值简化模型中进行仿真研究,仿真结果验证了所提双环SFC策略能有效地改善受扰动系统频率响应过程的暂态与稳态特性。
        The two asynchronous AC systems interconnected by BTB-VSC-HVDC( Back-To-Back Voltage Source Converter based HVDC) cannot provide necessary frequency support for each other,which results in reduced frequency response characteristics of each AC system under faults. To address this issue,a dual-loop SFC( Supplementary Frequency Control) strategy for BTB-VSC-HVDC system is proposed with theoretical analysis of its feasibility.The proposed SFC,which includes both active and reactive power-loop( P-loop SFC and Q-loop SFC),ensures that the non-perturbed system can participate in the frequency response of the disturbed system and realizes mutual frequency support of the AC systems at both ends. The P-loop SFC can provide frequency support for the disturbed system during the primary frequency modulation,and hence improving the steady-state characteristics of the frequency response. The Q-loop SFC can provide virtual inertia support to improve the transient characteristics of the frequency response. Simulations are conducted in a 4-machine 2-area benchmark with BTB-VSC-HVDC and an equivalent simplified model of Southwest Power Grid with Hubei Power Grid connecting by Chongqing-Hubei BTB-VSC-HVDC.Results show that the proposed control strategy effectively improves the transient and steady-state characteristics of the frequency response of the perturbed system.
引文
[1]汤广福.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社,2010:24-45.
    [2]文安,邓旭,魏承志,等.柔性直流输电系统交直流并列运行与孤岛运行方式间的切换控制[J].电力自动化设备,2014,34(7):99-106.WEN An,DENG Xu,WEI Chengzhi,et al. Switching control between AC-DC parallel and islanded operations of VSC-HVDC transmission system[J]. Electric Power Automation Equipment,2014,34(7):99-106.
    [3]王书征,郑良广,赵剑锋.用于海上风电场并网的多模块变压器耦合型VSC-HVDC技术[J].电力自动化设备,2011,31(10):101-106.WANG Shuzheng,ZHENG Liangguang,ZHAO Jianfeng. VSC-HVDC technology of multi-module transformer for grid-connection of offshore wind farm[J]. Electric Power Automation Equipment,2011,31(10):101-106.
    [4]胡文旺,唐志军,林国栋,等.柔性直流输电工程系统调试技术应用、分析与改进[J].电力自动化设备,2017,37(10):197-203.HU Wenwang,TANG Zhijun,LIN Guodong,et al. Application,analysis and improvement of system commissioning technology for flexible DC transmission project[J]. Electric Power Automation Equipment,2017,37(10):197-203.
    [5]JUNYENT F A,PIPELZADEH Y,GREEN T C. Blending HVDC-link energy storage and offshore wind turbine inertia for fast frequency response[J]. IEEE Transactions on Sustainable Energy,2015,6(3):1059-1066.
    [6]李宇骏,杨勇,李颖毅,等.提高电力系统惯性水平的风电场和VSC-HVDC协同控制策略[J].中国电机工程学报,2014,34(34):6021-6031.LI Yujun,YANG Yong,LI Yingyi,et al. Coordinated control of wind farms and VSC-HVDC to improve inertia level of power system[J].Proceedings of the CSEE,2014,34(34):6021-6031.
    [7]CASTRO L M,ACHA E. On the provision of frequency regulation in low inertia AC grids using HVDC systems[J]. IEEE Transactions on Smart Grid,2016,7(6):2680-2690.
    [8]LI Yunfeng,TANG Guangfu,AN Ting,et al. Power compensation control for interconnection of weak power systems by VSC-HVDC[J]. IEEE Transactions on Power Delivery,2017,32(4):1964-1974.
    [9]王炜宇,李勇,曹一家,等.基于虚拟调速器的MTDC虚拟同步机控制策略[J].中国电机工程学报,2009,29(12):1-11.WANG Weiyu,LI Yong,CAO Yijia,et al. The virtual synchronous generator technology based on virtual governor for MTDC system[J]. Proceedings of the CSEE,2009,29(12):1-11.
    [10]任敬国,李可军,牛林,等.基于附加信号的VSC-HVDC系统改进有功功率控制策略[J].电力自动化设备,2013,33(7):46-51.REN Jingguo,LI Kejun,NIU Lin,et al. Advanced active power control strategy based on additional signal for VSC-HVDC transmission system[J]. Electric Power Automation Equipment,2013,33(7):46-51.
    [11]朱瑞可,王渝红,李兴源,等.用于VSC-HVDC互联系统的附加频率控制策略[J].电力系统自动化,2014,38(16):81-87.ZHU Ruike,WANG Yuhong,LI Xingyuan,et al. An additional frequency control strategy for interconnected systems through VSCHVDC[J]. Automation of Electric Power Systems,2014,38(16):81-87.
    [12]GUAN Minyuan,CHENG Jingzhou,WANG Chao,et al. The frequency regulation scheme of interconnected grids with VSC-HVDC links[J]. IEEE Transactions on Power Systems,2017,32(2):864-872.
    [13]葛乐,陆文涛,袁晓冬,等.背靠背柔性直流互联的有源配电网合环优化运行[J].电力系统自动化,2017,41(6),135-141.GE Le,LU Wentao,YUAN Xiaodong,et al. Back-to-back VSC-HVDC based loop-closed optimal operation for active distribution network[J]. Automation of Electric Power Systems,2017,41(6):135-141.
    [14]QIN Jiangchao,SAEEDIFARD M. Predictive control of a modular multilevel converter for a back-to-back HVDC system[J]. IEEE Transactions on Power Delivery,2012,27(3):1539-1547.
    [15]阳岳希,杨杰,贺之渊,等.基于MMC的背靠背柔性直流输电系统控制策略[J].电力系统自动化,2017,41(4):120-124,157.YANG Yuexi,YANG Jie,HE Zhiyuan,et al. Control strategy of MMC based back-to-back HVDC transmission system[J]. Automation of Electric Power Systems,2017,41(4):120-124,157.
    [16]MOEINI A,KAMWA I. Analytical concepts for reactive power based primary frequency control in power systems[J]. IEEE Transactions on Power Systems,2016,31(6):4217-4230.
    [17]FARROKHABAD M,CANIZARES C A,BHATTACHARYA K. Frequency control in isolated/islanded microgrids through voltage regulation[J]. IEEE Transactions on Smart Grid,2017,8(3):1185-1194.
    [18]LATORRE H F,GHANDHARI M,SODER L. Active and reactive power control of a VSC-HVDC[J]. Electric Power Systems Research,2008,78(10):1756-1763.
    [19]RENEDO J,GARCIA C A,ROUCO L. Reactive-power coordination in VSC-HVDC multi-terminal systems for transient stability improvement[J]. IEEE Transactions on Power Systems,2017,32(5):3758-3767.
    [20]KUNDUR P,BALU N J,LAUBY M G. Power system stability and control[M]. New York,USA:Mc Graw-hill,1994:548-550.
    [21]姚伟,文劲宇,程时杰,等.基于Matlab/Simulink的电力系统仿真工具箱的开发[J].电网技术,2012,36(6):95-101.YAO Wei,WEN Jinyu,CHENG Shijie,et al. Development of a Matlab/Simulink based power system simulation toolbox[J]. Power System Technology,2012,36(6):95-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700