花生野生种在花生抗病中的利用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Wild peanut species and utilization in peanut disease resistance
  • 作者:朱琳 ; 靳秋生 ; 郭凤丹 ; 王兴军 ; 赵传志 ; 夏晗
  • 英文作者:ZHU Lin;JIN Qiu-sheng;GUO Feng-dan;WANG Xing-jun;ZHAO Chuan-zhi;XIA Han;Biotechnology Research Center,Shandong Academy of Agricultural Sciences,Shandong Key Laboratory of Crop Genetic Improvement,Ecology and Physiology;College of Life Sciences,Shandong Normal University;Jiaozuo Academy of Agricultural and Forestry Sciences;
  • 关键词:花生野生种 ; 抗病性 ; 遗传改良
  • 英文关键词:peanut;;wild species;;disease resistance;;genetic improvement
  • 中文刊名:ZGYW
  • 英文刊名:Chinese Journal of Oil Crop Sciences
  • 机构:山东省农业科学院生物技术研究中心山东省作物遗传改良与生态生理重点实验室;山东师范大学生命科学学院;河南省焦作市农林科学研究院;
  • 出版日期:2019-06-15
  • 出版单位:中国油料作物学报
  • 年:2019
  • 期:v.41;No.175
  • 基金:山东省农业良种工程项目(2016LZGC025);; 国家自然科学基金NSFC-CGIAR合作研究项目(31861143009);; 山东省农业科院农业科技创新工程(CXGC2018E13)
  • 语种:中文;
  • 页:ZGYW201903020
  • 页数:9
  • CN:03
  • ISSN:42-1429/S
  • 分类号:165-173
摘要
花生是世界上重要的油料作物之一。与栽培种相比,花生野生种具有较高的遗传多样性,能够适应一系列复杂环境,是抵抗生物胁迫和非生物胁迫的重要基因来源。多项研究表明,花生野生种对根结线虫病、晚斑病和锈病具有较高抗性。本文综述了野生花生的种类以及花生栽培种起源种相关研究进展,总结了野生花生对花生病害的抗性以及在育种中的应用。结合花生基因组学最新研究,展望了花生野生资源的利用前景。
        Peanut is one of the most important oil crops in the world.Up to now,81 Arachis species are identified and arranged in 9 infrageneric taxonomic sections according to its morphological characteristics,geographical distribution and cross-compatibility.Cultivated peanut has a very narrow genetic base,which is a fundamental limitation to crop improvement using only cultivated germplasm.Compared with cultivars,wild peanut species have high genetic diversity,can adapt to a series of complex environments and are important sources for resistance to biotic and abiotic stress.An increasing number of studies showed that many wild species of peanut were highly resistant to root-knot nematode,late leaf spot and rust.In recent years,new tools for genetic and genomic analysis,provided better efficiency in using peanut resources in crop improvement.This paper reviewed the wild species of peanuts and introduced the wild peanut with disease resistance to assist the genetic improvement of peanut.
引文
[1] Pandey M K,Monyo E,Ozias-Akins P,et al. Advances in Arachis genomics for peanut improvement[J].Biotechnol Adv,2012,30(3):639-651.
    [2] Leal-Bertioli S O M,JoséA,Alves-Freitas D I T,et al. Identification of candidate genome regions controlling disease resistance in Arachis[J]. BMC Plant Biol,2009,9(1):112.
    [3] Santana S H,Valls J F M. Arachis veigae(Fabaceae),the most dispersed wild species of the genus,and yet taxonomically overlooked[J]. Bonplandia,2015,24:139-150.
    [4] Smartt J,Gregory W C,Gregory M P. The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors[J]. Euphytica,1978,27(3):665-675.
    [5] Stalker H T,Dhesi J S,Parry D C,et al. Cytological and interfertility relationships of Arachis section Arachis[J]. Am J Bot,1991,78(2):238.
    [6] Robledo G,Lavia G I,Seijo G. Species relations among wild Arachis species with the A genome as revealed by FISH mapping of r DNA loci and heterochromatin detection[J]. Theor Appl Genet,2009,118(7):1295-1307.
    [7] Krapovickas A,Gregory W C. Taxonomy of the genus Arachis(Leguminosae)[J]. Bonplandia,1994,8:1-186.
    [8]王兴军,张新友.花生生物技术研究(第一版)[M].北京:科学出版社,2015:1-17.
    [9] Bertioli D J,Seijo G,Freitas F O,et al. An overview of peanut and its wild relatives[J]. Plant Genet Resour,2011,9(1):134-149.
    [10] Nielen S,Vidigal B S,Leal-Bertioli S C M,et al.Matita,a new retroelement from peanut:characterization and evolutionary context in the light of the Arachis A-B genome divergence[J]. Mol Genet Genomics,2012,287(1):21-38.
    [11] Kochert G,Halward T,Branch W D,et al. RFLP viariability in peanut(Arachis hypogaea)cultivars and wild species[J]. Theor Appl Genet,1991,81:565-570.
    [12] Gimenes M A,Lopes C R,Valls J F M. Genetic relationships among Arachis species based on AFLP[J].Genet Mol Biol,2002,25(3):349-353.
    [13] Milla S R,Isleib T G,Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers[J]. Genome,2005,48(1):1-11.
    [14] Moretzsohn M C,Hopkins M S,Mitchell S E,et al.Genetic diversity of peanut(Arachis hypogaea L.)and its wild relatives based on the analysis of hypervaraible regions of the genome[J]. BMC Plant Biol,2004,4:11.
    [15] Kochert G,Stalker H T,Gimenes M,et al. RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut,Arachis hypogaea(Leguminosae)[J]. Am J Bot,1996,83:1282-1291.
    [16] Seijo J G,Lavia G I,Fernández A,et al. Physical mapping of the 5S and 18S-25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea(Leguminosae)[J]. Am J Bot,2004,91(9):1294-1303.
    [17] Seijo G,Lavia G I,Fernández A,et al. Genomic relationships between the cultivated peanut(Arachis hypogaea,Leguminosae)and its close relatives revealed by double GISH[J]. Am J Bot,2007,94(12):1963-1971.
    [18] Robledo G,Seijo G. Species relationships among the wild B genome of Arachis species(section Arachis)based on FISH mapping of r DNA loci and heterochromatin detection:a new proposal for genome arrangement[J]. Theor Appl Genet,2010,121(6):1033-1046.
    [19] Grabiele M,Chalup L,Robledo G,et al. Genetic and geographic origin of domesticated peanut as evidenced by5S r DNA and chloroplast DNA sequences[J]. Plant Syst Evol,2012,298(6):1151-1165.
    [20] Zhang L N,Yang X Y,Tian L,et al. Identification of peanut(Arachis hypogaea)chromosomes using a fluorescence in situ hybridization system reveals multiple hybridization events during tetraploid peanut formation[J]. New Phytol,2016,211(4):1424-1439.
    [21] Bertioli D J,Cannon S B,Froenicke L,et al. The genome sequences of Arachis duranensis and arachis ipaensis,the diploid ancestors of cultivated peanut[J]. Nat Genet,2016,48(4):438-446.
    [22] Samoluk S S,Robledo G,Podio M,et al. First insight into divergence,representation and chromosome distribution of reverse transcriptase fragments from L1 retrotransposons in peanut and wild relative species[J]. Genetica,2015,143(1):113-125.
    [23] Temsch E M,Greilhuber J. Genome size variation in Arachis hypogaea and A. monticola re-evaluated[J].Génome,2000,43(3):449-451.
    [24] Chen X P,Li H J,Pandey M K,et al. Draft genome of the peanut A-genome progenitor(Arachis duranensis)provides insights into geocarpy,oil biosynthesis,and allergens[J]. Proc Natl Acad Sci USA,2016,113(24):6785-6790.
    [25] Lu Q,Li H F,Hong Y B,et al. Genome sequencing and analysis of the peanut B-genome progenitor(Arachis ipaensis)[J]. Front Plant Sci,2018,9:604.
    [26] Pandey M K,Agrawal G,Kale S M,et al. Development and evaluation of a high density genotyping ‘Axiom_Arachis’array with 58K SNPs for accelerating genetics and breeding in groundnut[J]. Sci Rep,2017,7:40577.
    [27] Clevenger J,Chu Y,Chavarro C,et al. Genome-wide SNP genotyping resolves signatures of selection and tetrasomic recombination in peanut[J]. Mol Plant,2017,10(2):309-322.
    [28] Stalker H T,Moss J P. Speciation,cytogenetics,and utilization of Arachis species[M]//Advances in Agronomy. Elsevier,1987:1-40. DOI:10. 1016/s0065-2113(08)60801-9.
    [29] Holbrook C C,Stalker H T. Peanut breeding and genetic resources[M]//Plant Breeding Reviews. Oxford,UK:John Wiley&Sons,Inc.,2010:297-356. DOI:10. 1002/9780470650202. ch6.
    [30] Mallikarjuna N,Jadhav D R,Reddy K,et al. Screening new Arachis amphidiploids,and autotetraploids for resistance to late leaf spot by detached leaf technique[J]. Eur J Plant Pathol,2012,132(1):17-21.
    [31]姜慧芳,任小平,黄家权,等.野生花生脂肪酸组成的遗传变异及远缘杂交创造高油酸低棕榈酸花生新种质[J].作物学报,2009,35(1):25-32.
    [32] Motsinger R E,Crawford J L,Thompson S S. Nematode survey of peanuts and cotton in southwest Georgia[J].Peanut Sci,1976,3(2):72-74.
    [33] Rodríguez-Kabana R,King P S. Evaluation of selected nematicides for control of Meloidogyne arenaria in peanut:a multi-year study[J]. Nematropica,1985,15:155-164.
    [34] Ingram E G,Rodriguezkabana R. Nematodes parasitic on peanuts in Alabama and evaluation of methods for detection and study of population dynamics[J]. Nematropica,1980,1:21-30.
    [35] Wheeler T A,Starr J L. Incidence and economic importance of plant-parasitic nematodes on peanut in Texas[J]. Peanut Sci,1987,14(2):94-96.
    [36]陈品三,彭德良.我国花生根结线虫种和小种鉴定及其细微结构观察和地区分布[J].中国油料,1989,11(2):47-50.
    [37] Nelson S C,Starr J L,Simpson C E. Expression of resistance to Meloidogyne arenaria in Arachis batizocoi and A. cardenasii[J]. J Nematol,1990,22:423-425.
    [38] Nelson S C,Simpson C E,Starr J L. Resistance to Meloidogyne arenaria in Arachis spp. germplasm[J]. J Nematol,1989,21:654-660.
    [39] Baltensperger D D,Prine D G,Dunn R A. Root-knot nematode resistance in Arachis glabrata[J]. Peanut Sci,1986,13(2):78-80.
    [40] Garcia G M,Stalker H T,Shroeder E,et al. Identification of RAPD,SCAR,and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea[J]. Genome,1996,39(5):836-845.
    [41] Stalker H T,Shew B B,Beute M K,et al. Meloidogyne arenaria resistance in advanced-generation Arachis hypogaea×A. cardenasii hybrids[J]. Proceedings of the American Peanut Research and Education Society,1995,27:241.
    [42] Simpson C E,Nelson S C,Starr J L,et al. Registration of Tx AG-6 and Tx AG-7 peanut germplasm lines[J].Crop Sci,1993,33(6):1418.
    [43] Burow M D,Simpson C E,Starr J L,et al. Transmission genetics of chromatin from a synthetic amphidiploids to cultivated peanut(Arachis hypogaea L.):broadening the gene pool of a monophyletic polyploidy species[J].Genetics,2001,159:823-837.
    [44] Simpson C E,Starr J L. Registration of‘COAN’peanut[J]. Crop Sci,2001,41(3):918.
    [45] Simpson C E,Starr J L,Church G T,et al. Registration of ‘Nema TAM’ peanut[J]. Crop Sci,2003,43(4):1561.
    [46] Holbrook C C,Timper P,Culbreath A K,et al. Registration of‘Tifguard’peanut[J]. J Plant Regist,2008,2(2):92.
    [47] Branch W D,Brenneman T B. Registration of‘Georgia-14N’Peanut[J]. J Plant Regist,2015,9(2):159.
    [48] Burow M D,Simpson C E,Paterson A H,et al. Identification of peanut(Arachis hypogaea L.)RAPD markers diagnostic of root-knot nematode(Meloidogyne arenaria(Neal)Chitwood)resistance[J]. Mol Breeding,1996,2(4):369-379.
    [49] Chu Y,Holbrook C C,Timper P,et al. Development of a PCR-based molecular marker to select for nematode resistance in peanut[J]. Crop Sci,2007,47(2):841.
    [50] Nagy E D,Chu Y,Guo Y F,et al. Recombination is suppressed in an alien introgression in peanut harboring Rma,a dominant root-knot nematode resistance gene[J]. Mol Breeding,2010,26(2):357-370.
    [51] Church G T,Starr J L,Simpson C E. A recessive gene for resistance to Meloidogyne arenaria in interspecific Arachis spp. hybrids[J]. J Nematol,2005,37(2):178-184.
    [52] Burow M D,Starr J L,Park C H,et al. Introgression of homeologous quantitative trait loci(QTLs)for resistance to the root-knot nematode[Meloidogyne arenaria(Neal)Chitwood]in an advanced backcross-QTL population of peanut(Arachis hypogaea L.)[J]. Mol Breeding,2014,34(2):393-406.
    [53] Branch W D,Brenneman T B,Noe J P. Evidence for a second RKN resistance gene in peanut[J]. Peanut Sci,2016,43(1):49-51.
    [54] Burow M,Church G,Paterson A,et al. Use of RFLP markers for identification of individuals homozygous for resistance to Meloidogyne arenaria in peanut[J]. Nematology,2000,2(5):575-580.
    [55] Starr J L,Morgan E R,Simpson C E. Management of the peanut root-knot nematode,Meloidogyne arenaria,with host resistance[J]. Plant Heal Prog,2002,3(1):13. DOI:10. 1094/PHP-2002-1121-01-HM.
    [56] Morgante C V,Brasileiro A C M,Roberts P A,et al. A survey of genes involved in Arachis stenosperma resistance to Meloidogyne arenaria race 1[J]. Funct Plant Biol,2013,40(12):1298.
    [57] Guimaraes P M,Guimaraes L A,Morgante C V,et al.Root transcriptome analysis of wild peanut reveals candidate genes for nematode resistance[J]. Plos One,2015,10(10):e0140937. DOI:10. 1371/journal. pone.0140937.
    [58] Leal-Bertioli S C M,Moretzsohn M C,Roberts P A,et al. Genetic mapping of resistance to meloidogyne Arenaria in Arachis stenosperma:A new source of nematode resistance for peanut[J]. G3,2016,6(2):377-390.
    [59] Grichar W J,Besler B A,Jaks A J. Peanut(Arachis hypogaea L.)cultivar response to leaf spot disease development under four disease management programs1[J]. Peanut Sci,1998,25(1):35-39.
    [60] Dwivedi S L,Crouch J H,Nigam S N,et al. Molecular breeding of groundnut for enhanced productivity and food security in the semi-arid tropics:opportunities and challenges[M]//Advances in Agronomy. Elsevier,2003:153-221. DOI:10. 1016/s0065-2113(03)80004-4.
    [61] Pande S,Rao J N. Resistance of wild Arachis species to late leaf spot and rust in greenhouse trials[J]. Plant Dis,2001,85(8):851-855.
    [62] Fávero A P,Moraes S A D,Garcia A A F,et al. Characterization of rust,early and late leaf spot resistance in wild and cultivated peanut germplasm[J]. Sci Agric,2009,66(1):110-117.
    [63]李丽容,林少璇,廖小妹,等.花生野生资源品质分析及杂交试验[J].中国油料,1994,16(2):22-26.
    [64] Leal-Bertioli S C M. Characterization of disease resistances in wild Arachis and introgression of wild genes in peanut(Arachis hypogaea)breeding[C]//5th International Congress on Legume Genetics and Genomics,Asilomar Conference Grounds,Pacific Grove,California,2010,July 2-8.
    [65] Kumar K R R,Kirti P B. Differential gene expression in Arachis diogoi upon interaction with peanut late leaf spot pathogen,Phaeoisariopsis personata and characterization of a pathogen induced cyclophilin[J]. Plant Mol Biol,2011,75(4/5):497-513.
    [66] Singh N K,Kumar K R R,Kumar D,et al. Characterization of a pathogen induced thaumatin-like protein gene Ad TLP from Arachis diogoi,a wild peanut[J]. Plos One,2013,8(12):e83963.
    [67] Kumar D,Kirti P B. Transcriptomic and proteomic analyses of resistant host responses in Arachis diogoi challenged with late leaf spot pathogen,Phaeoisariopsis personata[J]. Plos One,2015,10(2):e0117559.
    [68] Kornegay J L,Beute M K,Wynne J C. Inheritance of resistance to Cercospora arachidicola and Cercosporidium personatumin six virginia-type peanut lines[J]. Peanut Sci,1980,7(1):4-9.
    [69] Nevill D J. Inheritance of resistance to Cercosporidium personatum in groundnuts:a genetic model and its implications for selection[J]. Oleagineux,1982,37(7):355-363.
    [70] Reddy L J,Nigam S N,Moss J P,et al. Registration of ICGV86699 peanut germplasm line with multiple disease and insect resistance[J]. Crop Sci. 1996,36(3):821.
    [71] Zhou X J,Xia Y L,Liao J H,et al. Quantitative trait locus analysis of late leaf spot resistance and plant-type-related traits in cultivated peanut(Arachis hypogaea L.)under multi-environments[J]. Plos One,2016,11(11):e0166873.
    [72] Leal-Bertioli S O M,JoséA,Alves-Freitas D I T,et al. Identification of candidate genome regions controlling disease resistance in Arachis[J]. BMC Plant Biol,2009,9(1):112.
    [73] Kumari V,Gowda M V C,Tasiwal V,et al. Diversification of primary gene pool through introgression of resistance to foliar diseases from synthetic amphidiploids to cultivated groundnut(Arachis hypogaea L.)[J]. Crop J,2014,2(2/3):110-119.
    [74] Subrahmanyam P,Rao V R,McDonald D,et al. Origins of resistances to rust and late leaf spot in peanut(Arachis hypogaea,Fabaceae)[J]. Econ Bot,1989,43(4):444-455.
    [75] Mondal S,Hande P,Badigannavar A M. Identification of transposable element markers for a rust(Puccinia arachidis Speg.)resistance gene in cultivated peanut[J]. J Phytopathol,2014,162(7/8):548-552.
    [76] Subrahmanyam P,McDonald D. Rust disease of groundnut[J]. Information Bulletin,1983,13,ICRISAT,India:15.
    [77] Subrahmanyam P,Moss J P,Rao V R. Resistance to peanut rust in wild Arachis species[J]. Plant Dis,1983,67:209-212.
    [78] Varman P V. A foliar disease resistant line developed through interspecific hybridization in groundnut(Arachis hypogaea)[J]. Indian J Agr Sci,1999,69:67-68.
    [79] Mondal S,Badigannavar A M,Murty G S S. RAPD markers linked to a rust resistance gene in cultivated groundnut(Arachis hypogaea L.)[J]. Euphytica,2007,159(1/2):233-239.
    [80] Mondal S,Badigannavar A M,D’Souza S F. Molecular tagging of a rust resistance gene in cultivated groundnut(Arachis hypogaea L.)introgressed from Arachis cardenasii[J]. Mol Breeding,2012,29(2):467-476.
    [81] Mondal S,Badigannavar A M,D’Souza S F. Development of genic molecular markers linked to a rust resistance gene in cultivated groundnut(Arachis hypogaea L.)[J]. Euphytica,2012,188(2):163-173.
    [82] Leal-Bertioli S C M,Cavalcante U,Gouvea E G,et al. Identification of QTLs for rust resistance in the peanut wild species Arachis magna and the development of KASP markers for marker-assisted selection[J]. G3,2015,5(7):1403-1413.
    [83]张新友,韩锁义,刘华,等.不同花生品种高产生理参数研究[J].中国油料作物学报,2011,33(1):44-47.
    [84]周翠球.花生新品种桂花22选育[J].广西农业科学,2003,34(1):17-18.
    [85]王传堂,王秀贞,唐月异,等.花生区组间杂交新品种花育31号的选育[J].花生学报,2009,38(3):29-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700