纳米分子筛LTA包裹Ni-Salen配合物为修饰碳糊电极用于电催化氧化肼反应(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Encapsulation of a nickel Salen complex in nanozeolite LTA as a carbon paste electrode modifier for electrocatalytic oxidation of hydrazine
  • 作者:Seyed ; Karim ; Hassaninejad-Darzi
  • 英文作者:Seyed Karim Hassaninejad-Darzi;Department of Chemistry, Faculty of Basic Science, Babol Noshirvani University of Technology;
  • 关键词:纳米分子筛LTA ; Salen配合物 ; Ni(Ⅱ)-Salen ; A/CPE ; ; 电催化氧化 ; 燃料电池
  • 英文关键词:Nanozeolite linde type A;;Salen complex;;Ni(Ⅱ)‐SalenA;;modified carbon;;paste electron;;Hydrazine;;Electrocatalytic oxidation;;Fuel cell
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:Babol Noshirvani科技大学基础科学院化学系;
  • 出版日期:2018-02-15
  • 出版单位:催化学报
  • 年:2018
  • 期:v.39
  • 语种:英文;
  • 页:CHUA201802008
  • 页数:17
  • CN:02
  • ISSN:21-1601/O6
  • 分类号:111-127
摘要
采用柔性配体法将Ni-salen配合物包裹在纳米分子筛LTA的超笼中,用来修饰碳糊电极制得Ni(Ⅱ)-Salen A/CPE,并采用循环伏安法、计时电流法和计时库仑法考察了该电极电催化氧化0.1 mol/L Na OH溶液中肼反应性能.首先采用无有机模板剂法合成纳米分子筛LTA,并用各种技术进行了表征.XRD和粒径分析结果分别显示LTA晶体的平均粒径为56.1和72nm.在Ni(Ⅱ)-Salen A/CPE电极氧化还原位上水合肼催化氧化反应电子转移系数为0.64,速率常数为1.03×10~5 cm~3/(mol·s).电催化反应机理研究表明,水合肼氧化反应通过它与Ni~(3+)(Salen)O(OH)反应或直接进行电氧化反应.阳极峰电流与扫描速率的平方根呈线性关系,表明反应受扩散控制,水合肼的扩散系数为1.18×10~(-7)cm~2/s.结果表明,Ni(Ⅱ)-Salen A/CPE对水合肼氧化反应表现出高的电催化活性,这是由于纳米分子筛LTA的多孔结构以及Ni(Ⅱ)-Salen的存在.最后研究了水合肼在碱性溶液中Ni(Ⅱ)-Salen A/CPE电极上的氧化反应机理,发现其为四电子过程,第一个电子转移反应为速率控制步骤,然后是一个三电子过程,产生环境友好的最终产物氮气和水.
        A nickel salen complex was encapsulated in the supercages of nanozeolite NaA, LTA(linde type A)structure, using the flexible ligand method. The electrochemical behavior and electrocatalytic activity of a carbon paste electrode(CPE) modified with Ni(Ⅱ)-Salen-A(Ni(Ⅱ)-SalenA/CPE) for hydrazine oxidation in 0.1 mol/L NaOH solution were investigated by cyclic voltammetry, chronoamperometry, and chronocoulometry. First, organic-template-free synthesis of nanozeolite LTA was performed and the obtained material was characterized by various techniques. The average particle size of the LTA crystals was estimated to be 56.1 and 72 nm by X-ray diffraction and particle size analysis, respectively. The electron transfer coefficient was found to be 0.64 and the catalytic rate constant for oxidation of hydrazine at the redox sites of Ni(Ⅱ)-SalenA/CPE was found to be 1.03 × 10~5 cm~3/(mol·s). Investigation of the electrocatalytic mechanism suggested that oxidation of hydra-zine occurred through reaction with Ni~(3+)(Salen)O(OH) and also direct electrooxidation. The anodic peak currents revealed a linear dependence on the square root of the scan rate, indicating a diffusion-controlled process, and the diffusion coefficient of hydrazine was found to be 1.18 × 10~(-7) cm~2/s. The results indicated that Ni(Ⅱ)-SalenA/CPE displays good electrocatalytic activity toward hydra-zine oxidation owing to the porous structure of nanozeolite LTA and the Ni(Ⅱ)-Salen complex. Finally, the general reaction mechanism for the electrooxidation of hydrazine on Ni(Ⅱ)-SalenA/CPE in alkaline solution involves the transfer of four electrons, in which the first electron transfer reaction acts as the ratelimiting step followed by a three-electron process to generate environmentally friendly nitrogen and water as final products.
引文
[1]G.Dutta,S.Nagarajan,L.J.Lapidus,P.B.Lillehoj,Biosensors Bioe-lectron.,2017,92,372-377.
    [2]H.Hosseini,H.Ahmar,A.Dehghani,A.Bagheri,A.R.Fakhari,M.M.Amini,Electrochim.Acta,2013,88,301-309.
    [3]A.Senthil Kumar,P.Barathi,K.Chandrasekara Pillai,J.Electroanal.Chem.,2011,654,85-95.
    [4]R.Gupta,P.K.Rastogi,V.Ganesan,D.K.Yadav,P.K.Sonkar,Sen-sors Actuat.B,2017,239,970-978.
    [5]R.Liu,X.Jiang,F.Guo,N.N.Shi,J.L.Yin,G.L.Wang,D.X.Cao,Elec-trochim.Acta,2013,94,214-218.
    [6]K.I.Ozoemena,T.Nyokong,Talanta,2005,67,162-168.
    [7]B.Kaur,R.Srivastava,B.Satpati,Cataly.Sci.Technol.,2016,6,1134-1145.
    [8]Y.Liang,K.Wu,C.Ge,Y.Zhou,Y.Chen,Y.Tang,T.Lu,Fuel Cells,2012,12,946-955.
    [9]D.M.Zhang,B.Wang,D.X.Cao,K.Ye,Y.Xu,J.L.Yin,K.Cheng,G.L.Wang,Mater.Sci.Eng.B,2014,188,48-53.
    [10]M.Jafarian,T.Rostami,M.G.Mahjani,F.Gobal,J.Electroanal.Chem.,2016,763,134-140.
    [11]X.L.Wang,Y.X.Zheng,M.L.Jia,L.S.Yuan,C.Peng,W.H.Yang,Int.J.Hydrogen Energy,2016,41,8449-8458.
    [12]D.C.de Oliveira,W.O.Silva,M.Chatenet,F.H.Lima,Appl.Catal.B,2017,201,22-28.
    [13]S.R.Hosseini,S.Ghasemi,M.Kamali-Rousta,J.Power Sources,2017,343,467-476.
    [14]A.A.Ensafi,M.Lotfi,H.Karimi-Maleh,Chin.J.Catal.,2012,33,487-493.
    [15]H.R.Zare,N.Nasirizadeh,Electroanalysis,2006,18,507-512.
    [16]S.V.Guerra,L.T.Kubota,C.R.Xavier,S.Nakagaki,Anal.Sci.,1999,15,1231-1234.
    [17]A.Benvidi,S.Jahanbani,B.F.Mirjalili,R.Zare,Chin.J.Catal.,2016,37,549-560.
    [18]D.R.Rolison,Chem.Rev.,1990,90,867-878.
    [19]X.D.Liu,Y.P.Wang,X.M.Cui,Y.He,J.Mao,Powder Technol.,2013,243,184-193.
    [20]S.K.Hassaninejad-Darzi,M.Rahimnejad,S.N.Mirzababaei,Mi-crochem.J.,2016,128,7-17.
    [21]B.Bayati,A.A.Babaluo,R.Karimi,J.Eur.Ceram.Soc.,2008,28,2653-2657.
    [22]A.Walcarius,Chem.Soc.Rev.,2013,42,4098-4140.
    [23]X.F.Guo,G.J.Kim,Top.Catal.,2010,53,510-516.
    [24]G.J.Kim,S.H.Kim,Catal.Lett.,1999,57,139-143.
    [25]W.Y.Wang,R.F.Li,R.Zhang,J.L.Ma,B.C.Wang,J.Electroanal.Chem.,2015,742,110-121.
    [26]W.Y.Wang,R.F.Li,L.Liu,R.Zhang,B.C.Wang,J.Solid State Elec-trochem.,2015,19,2001-2012.
    [27]W.Y.Wang,R.F.Li,X.Hua,R.Zhang,Electrochim.Acta,2015,163,48-56.
    [28]R.Zhang,W.K.Zhang,L.Z.Gao,J.Zhang,P.Li,W.Y.Wang,R.F.Li,Appl.Catal.A,2013,466,264-271.
    [29]X.Zhang,D.X.Tang,G.J.Jiang,Adv.Powder Technol.,2013,24,689-696.
    [30]B.M.Daas,S.Ghosh,J.Electroanal.Chem.,2016,783,308-315.
    [31]M.Salavati-Niasari,M.Shakouri-Arani,F.Davar,Microporous Mesoporous Mater.,2008,116,77-85.
    [32]S.Brunauer,P.H.Emmett,E.Teller,J.Am.Chem.Soc.,1938,60,309-319.
    [33]M.M.J.Treacy,J.B.Higgins,Collection of Simulated XRD Powder Patterns for Zeolites,5th Ed.,Elsevier,2007.
    [34]N.B.Castagnola,P.K.Dutta,J.Phys.Chem.B,1998,102,1696-1702.
    [35]B.Z.Zhan,M.A.White,M.Lumsden,J.Mueller-Neuhaus,K.N.Robertson,T.S.Cameron,M.Gharghouri,Chem.Mater.,2002,14,3636-3642.
    [36]A.Nezamzadeh-Ejhieh,M.Karimi-Shamsabadi,Chem.Eng.J.,2013,228,631-641.
    [37]B.B.Fan,H.Y.Li,W.B.Fan,C.Jin,R.F.Li,Appl.Catal.A,2008,340,67-75.
    [38]S.Storck,H.Bretinger,W.F.Maier,Appl.Catal.A,1998,174,137-146.
    [39]K.S.Sing,D.H.Evertt,R.A.W.Haul,L.Moscou,R.A.Pierotti,J.Rouquerol,T.Siemieniwwska,Pure Appl.Chem.,1985,57,603-619.
    [40]Z.T.Xue,J.H.Ma,W.M.Hao,X.Bai,Y.H.Kang,J.H.Liu,R.F.Li,J.Mater.Chem.,2012,22,2532-2538.
    [41]J.Rouquerol,D.Avnir,C.W.Fairbridge,D.H.Everett,J.H.Haynes,N.Pernicone,J.D.F.Ramsay,K.S.W.Sing,K.K.Unger,Pure Appl.Chem.,1994,66,1739-1758.
    [42]E.R.Shilpa,V.Gayathri,J.Environ.Chem.Eng.,2016,4,4194-4206.
    [43]S.K.Hassaninejad-Darzi,RSC Adv.,2015,5,105707-105718.
    [44]S.K.Hassaninejad-Darzi,M.Gholami-Esfidvajani,Int.J.Hydrogen Energy,2016,41,20085-20099.
    [45]R.Ojani,J.B.Raoof,S.R.H.Zavvarmahalleh,Electrochim.Acta,2008,53,2402-2407.
    [46]A.A.El-Shafei,A.M.Abd Elhafeez,H.A.Mostafa,J.Solid State Elec-trochem.,2010,14,185-190.
    [47]M.Fleischmann,K.Korinek,D.Pletcher,J.Electroanal.Chem.Interf.Electrochem.,1971,31,39-49.
    [48]S.N.Azizi,S.Ghasemi,H.Yazdani-Sheldarrei,Int.J.Hydrogen En-ergy,2013,38,12774-12785.
    [49]A.Samadi-Maybodi,S.Ghasemi,H.Ghaffari-Rad,J.Power Sources,2016,303,379-387.
    [50]E.Laviron,J.Electroanal.Chem.Interf.Electrochem.,1979,101,19-28.
    [51]S.K.Hassaninejad-Darzi,J.Electroceram.,2014,33,252-263.
    [52]A.J.Bard,L.R.Faulkner,Electrochemical Methods,2nd ed.,Wiley,New York,2001.
    [53]B.Habibi,N.Delnavaz,Int.J.Hydrogen Energy,2010,35,8831-8840.
    [54]F.I.Miao,B.R.Tao,L.Sun,T.Liu,J.C.You,L.W.Wang,P.K.Chu,J.Power Sources,2010,195,146-150.
    [55]S.J.R.Prabakar,S.S.Narayanan,J.Electroanal.Chem.,2008,617,111-120.
    [56]I.Danaee,M.Jafarian,F.Forouzandeh,F.Gobal,M.G.Mahjani,Int.J.Hydrogen Energy,2008,33,4367-4376.
    [57]D.K.Gosser,Cyclic Voltammetry:Simulation and Analysis of Reac-tion Mechanisms,VCH,New York,1993.
    [58]M.Hosseini,M.M.Momeni,M.Faraji,J.Mol.Catal.A,2011,335,199-204.
    [59]H.X.Luo,Z.J.Shi,N.Q.Li,Z.N.Gu,Q.K.Zhuang,Anal.Chem.,2001,73,915-920.
    [60]L.Zheng,J.F.Song,Talanta,2009,79,319-326.
    [61]Y.Wang,Y.Wan,D.Zhang,Electrochem.Commun.,2010,12,187-190.
    [62]R.Zhang,L.Liu,Y.H.Li,W.Y.Wang,R.F.Li,Int.J.Electrochem.Sci,2015,10,2355-2369.
    [63]M.Mazloum-Ardakani,A.Khoshroo,Electrochim.Acta,2013,103,77-84.
    [64]A.Benvidi,P.Kakoolaki,H.R.Zare,R.Vafazadeh,Electrochim.Acta,2011,56,2045-2050.
    [65]M.M.Ardakani,P.E.Rahimi,H.R.Zare,H.Naeimi,Electrochim.Acta,2007,52,6118-6124.
    [66]U.P.Azad,V.Ganesan,Electrochim.Acta,2011,56,5766-5770.
    [67]H.Razmi-Nerbin,M.H.Pournaghi-Azar,J.Solid State Electrochem.,2002,6,126-133.
    [68]M.U.Anu Prathap,V.Anuraj,B.Satpati,R.Srivastava,J.Hazard.Mater.,2013,262,766-774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700