无机膜气体分离的温度-压力-渗透率方程及其在吸附问题上的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temperature-pressure-permeability equation of gas separation in inorganic membrane and its application on adsorption
  • 作者:李东 ; 郝静远
  • 英文作者:LI Dong;HAO Jingyuan;Xi'an Siyuan University,Energy & Chemical Engineering Research Center;
  • 关键词:气体分离 ; 温度 ; 压力 ; 气体渗透率 ; 煤层气 ; 吸附
  • 英文关键词:gas separation;;temperature;;pressure;;gas permeability;;coalbed methane;;adsorption
  • 中文刊名:MKXY
  • 英文刊名:Membrane Science and Technology
  • 机构:西安思源学院能源及化工大数据应用教学研究中心;
  • 出版日期:2018-08-25
  • 出版单位:膜科学与技术
  • 年:2018
  • 期:v.38;No.191
  • 语种:中文;
  • 页:MKXY201804027
  • 页数:5
  • CN:04
  • ISSN:62-1049/TB
  • 分类号:131-135
摘要
综合考虑努尔森(Knudsen)扩散和表面扩散,理论上推导出适用于无机膜气体分离的温度-压力-气体渗透率方程.方程包含4个有物理意义的参数A、B、Δ和β.A和B是气体流动系数.Δ显示温度影响.β显示压力影响.基于无机膜气体分离与煤层气吸附的相似性,将该方程演变成仍然有4个参数(A′、B″、Δ和β)和相同的数学形式的温度-压力-气体吸附方程,并以松藻煤电公司8#煤层煤样的系列Langmuir等温吸附实验数据,分别用平均相对偏差计算法和作图法验证了其适用性.
        Considering the Knudsen diffusion and surface diffusion,a modified diffusion equation for gas permeation through microporous media was obtained theoretically as a function of both temperature and pressure.The diffusion equation contains four parameters(A,B,Δandβ)with physical meaning.Aand Bare Knudsen diffusivity and surface diffusivity.The pressure effect on the surface diffusion stems from the adsorbate concentration.The temperature effectΔis related to the relative energy difference between the minimum potential energy and the activation energy for an adsorbed molecule.There are high degrees of similarity between inorganic membrane gas separation and coal seam gas adsorption.A temperaturepressure-adsorption equation was,therefore,evolved with the same mathematical formula and four parameters.The Langmuir series isothermal adsorption data of Songzao 8#coal seam are used to verify the applicability of temperature-pressure-adsorption equation.Both the average relative deviation calculation method and the mapping method verify the applicability.
引文
[1]廖传华.无机膜气体分离的机理和模型[J].硅酸盐通报,2004,(2):48-51.
    [2]蒋柏泉,张文龙,严进,等.无机膜分离气体机理及模型[J].南昌大学学报(工科版),1998,20(4):7-12.
    [3]Kammermeyer K,Wyrick D D.Effect of adsorption in barrier separation[J].Ind Eng Chem,1958,50(9):1309-1310.
    [4]Hwang S T,Kammermeyer K.Surface diffusion in microporous media[J].Can J Chem Eng,1966,44:82-89.
    [5]Hwang S T,Kammermeyer K.Evidence of surface diffuse of helium[J].Sep Sci,1967,2(4):555-557.
    [6]Hwang S T,Kammermeyer K.Gaseous diffusion and flow in commercial catalysts at pressure levels above atmospheric[J].Ind Eng Chem,Fundam,1968,7(2):202-210.
    [7]Hwang S T.Surface diffusion parallel with Knudsen flow[J].Sep Sci,1976,11(1):17-27.
    [8]Li D,Hwang S T.Preparation and characterization of silicon base inorganic membrane for gas separation[J].J Membr Sci,1991,59:331-352.
    [9]Li D,Hwang S T.Gas separation by silicon based inorganic membrane at high temperature[J].J Membr Sci,1992,66:119-127.
    [10]Cooney D O.On the basis for the Freundlich adsorption isotherm[J].Chem Eng Comm,1990 94(1):27-34.
    [11]Langmuir I.The adsorption of gases on plane surfaces of glass,mica and platinum[J].J Am Chem Soc,1918,40:1361-1403.
    [12]王佟,王庆伟,傅雪海.煤系非常规天然气的系统研究及其意义[J].煤田地质与勘探,2014,42(1):24-27.
    [13]李建忠,董大忠,陈更生,等.中国页岩气资源前景与战略地位[J].天然气工业,2009,29(5):11-16.
    [14]赵志根,唐修义,张光明.较高温度下煤吸附甲烷实验及其意义[J].煤田地质与勘探,2001,29(4):29-31.
    [15]张天军,许鸿杰,李树刚,等.温度对煤吸附性能的影响[J].煤炭学报,2009,34(6):802-805.
    [16]钟玲文,郑玉柱,员争荣,等.煤在温度和压力综合影响下的吸附性能及气含量预测[J].煤炭学报,2002,27(6):581-585.
    [17]赵丽娟,秦勇,Wang G,等.高温高压条件下深部煤层气吸附行为[J].高校地质学报,2013,19(4):648-654.
    [18]傅雪海,秦勇,权彪,等.中煤级煤吸附甲烷的物理模拟与数值模拟研究[J],地质学报,2008,82(10):1368-1371.
    [19]马东明,张遂安,蔺亚兵.煤的等温吸附解吸实验及精确拟合[J].煤炭学报,2011,36(3):476-480.
    [20]赵天逸,宁正福,曾彦.页岩与煤岩等温吸附模型的对比分析[J].新疆石油地质,2014,35(3):319-323.
    [21]张翔,陶云奇.不同温度条件下煤对瓦斯的等温吸附实验研究[J].煤炭工程,2011,(4):87-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700