中高频激励下微振动流体阻尼器解析模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analytical model of micro vibration fluid viscous damper under medium and high frequency excitation
  • 作者:焦小磊 ; 马文来 ; 赵阳 ; 李思梁
  • 英文作者:JIAO XiaoLei;MA WenLai;ZHAO Yang;LI SiLiang;School of Astronautics, Harbin Institute of Technology;Shenyang Institute of Automation, Chinese Academy of Sciences;
  • 关键词:微振动 ; 流体阻尼器 ; 可压缩性 ; 黏性损失 ; 中高频 ; 解析模型
  • 英文关键词:micro vibration;;fluid viscous damper;;compressibility;;viscosity loss;;medium and high frequency;;analytical model
  • 中文刊名:JEXK
  • 英文刊名:Scientia Sinica(Technologica)
  • 机构:哈尔滨工业大学航天学院;中国科学院沈阳自动化研究所;
  • 出版日期:2017-12-20
  • 出版单位:中国科学:技术科学
  • 年:2017
  • 期:v.47
  • 基金:国家重点基础研究发展计划(“973”计划)(批准号:2013CB733004)资助项目
  • 语种:中文;
  • 页:JEXK201712004
  • 页数:13
  • CN:12
  • ISSN:11-5844/TH
  • 分类号:45-57
摘要
航天器执行机构工作时产生的高频微幅扰振严重影响成像精度.针对中高频激励下微振动流体阻尼器,采用解析方法,考虑流体的压缩性及阻尼孔道内黏性损失,建立微振动流体阻尼器中高频激励下动力学解析模型,给出压差力在时域解析表达式,分析阻尼孔尺寸、流体黏度、激励幅值对动力学特性影响,结果表明,压差力中包含瞬态分量、阻尼力分量以及弹性力分量,阻尼力分量提供阻尼力,弹性力分量提供刚度,瞬态分量随时间衰减.孔径、孔长、阻尼液黏度变化会导致刚度和阻尼变化,激励幅值变化对刚度和阻尼没有影响.
        Micro vibration is produced by CMG(control moment gyroscope) in the satellite, which has disadvantage for high precision payload.With consideration of compressibility of fluid and viscosity loss in the damping orifice, dynamic model of fluid viscous damper under medium and high frequency excitation is proposed. Based on this model, analytical solution of output force in the time domain is obtained. After that, dynamic characteristics of damper for different values of diameter, length, viscosity, amplitude are analyzed.The results reveal that output force can be divided into transient force, damping force, elastic force. Transient force decays with time quickly, damping force dissipates energy, elastic force provides stiffness. The values of stiffness coefficient and damping coefficient are decided by diameter, length, viscosity. Amplitude has no influence on the stiffness and damping.
引文
[1]丁幼亮,耿方方,葛文浩.多塔斜拉桥风致抖振响应的黏滞阻尼器控制研究.工程力学,2015,32:130-137
    2聂利英,郭其远,李建中.设置纵向大型液体黏滞阻尼器的大跨斜拉桥主梁纵向运动阻尼水平研究.工程力学,2015,32:141-148
    3梁栋,孙利民,程纬.斜拉桥主梁振动对拉索阻尼器减振效果的影响.力学学报,2009,41:564-574
    4焦驰宇,孙广龙,陈永祁.液体黏滞阻尼器在市政桥梁抗震加固中的应用.工程力学,2014,31:177-181
    5 Hatzigeorgiou G D,Pnevmatikos N G.Maximum damping forces for structures with viscous dampers under near-source earthquakes.Eng Struct,2014,68:1-13
    6苏成,李保木,陈太聪.黏滞阻尼器减震结构非线性随机振动的时域显式降维迭代随机模拟法.计算力学学报,2016,33:557-563
    7贾九红,沈小要,杜俭业.黏性流体阻尼器的设计与试验.机械工程学报,2008,44:195-197
    8 Ras A,Boumechra N.Study of nonlinear fluid viscous dampers behaviour in seismic steel structures design.Arab J Sci Eng,2014,39:8635-8648
    9 Luu M,Martinez-Rodrigo M D,Zabel V,et al.H∞optimization of fluid viscous dampers for reducing vibrations of high-speed railway bridges.J Sound Vib,2014,333:2421-2442
    10 Narkhede D I,Sinha R.Behavior of nonlinear fluid viscous dampers for control of shock vibrations.J Sound Vib,2014,333:80-98
    11 Yeh F Y,Chang K C,Chen T W,et al.The dynamic performance of a shear thickening fluid viscous damper.J Chin Institute Engineers,2014,37:983-994
    12 Verbaan C A M,Peters G W M,Steinbuch M.Linear viscoelastic fluid characterization of ultra-high-viscosity fluids for high-frequency damper design.Rheol Acta,2015,54:667-677
    13 Marano G C,Greco R.Identification of parameters of Maxwell and Kelvin-voigt generalized models for fluid viscous dampers.J Vib Control,2013,21:260-274
    14赵国辉,刘健新,李宇.基于随机振动的液体黏滞阻尼器参数优化.西南交通大学学报,2013,48:1003-1007
    15 H鴊sberg J,Brodersen M L.Hybrid viscous damper with filtered integral force feedback control.J Vib Control,2016,22:1645-1656
    16 Kawak B J.Development of a low-cost,low micro-vibration CMG for small agile satellite applications.Acta Astronaut,2017,131:113-122
    17 Kawak B J,Cabon B H,Aglietti G S.Innovative viscoelastic material selection strategy based on dma and mini-shaker tests for spacecraft applications.Acta Astronaut,2017,131:18-27
    18张庆君,王光远,郑钢铁.光学遥感卫星微振动抑制方法及关键技术.宇航学报,2015,36:126-132
    19 Hu Q,Jia Y H,Xu S.Dynamics and vibration suppression of space structures with control moment gyroscopes.Acta Astronaut,2014,96:232-245
    20 Yao Z,Chao S,Zi X G.Dynamic characteristics and performance evaluation for the part strut failure of the vibration isolation platform on satellites.Acta Astronaut,2017,33:403-415
    21 Alessandro S,Aglietti G S.A 2-collinear-DoF strut with embedded negative-resistance electro-magnetic shunt dampers for spacecraft microvibration.Smart Mater Struct,2017,26:1-11
    22 Davis P,Cunningham D,Harrell J.Advanced 1.5 Hz passive viscous isolation system.In:Proceddings of the 35th Structures,Structural Dynamics,and Materials Conference.South Carolina,2013.32:2655-2665
    23 Davis P,Carter D R,Tupper Hyde T.Second-generation hybrid D-strut.Smart Structures and Materials 1995:Passive Damping,1995,2445:161-175
    24王杰,赵寿根,吴大方.微振动隔振器动态阻尼系数的测试方法研究.航空学报,2011,32:1-8
    25王杰,赵寿根,吴大方.一种基于黏性流体介质的微振动隔振器机理研究.振动工程学报,2015,28:238-247
    26王超新,孙靖雅,张志谊.最优阻尼三参数隔振器设计和试验.机械工程学报,2015,51:91-96
    27马俊.用于微振动控制的隔振器分析和实验.噪声振动与控制,2015,35:206-208
    28 Shi W K,Qian C,Chen Z Y,et al.Modeling and dynamic properties of a four-parameter zener model vibration isolator.Shock Vib,2016,2016:1-17
    29 Goldasz J,Alexandridis A A.Medium-and high-frequency analysis of magnetorheological fluid dampers.J Vib Control,2011,18:2140-2148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700