脑部亚低温的应用时机对急诊心跳骤停患者神经功能及认知障碍影响因素分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of influencing factors of brain hypothermia application timing on neurological and cognitive impairment in patients with emergency cardiac arrest
  • 作者:雷金花
  • 英文作者:LEI Jin-hua;Department of Emergency, The People's Hospital of Longhua;
  • 关键词:心跳骤停 ; 亚低温 ; ; 时机选择 ; 神经功能 ; 认知功能 ; 认知障碍
  • 英文关键词:cardiac arrest;;hypothermia;;brain;;timing choice;;neurological function;;cognitive function;;cognitive impairment
  • 中文刊名:SGLC
  • 英文刊名:Biomedical Engineering and Clinical Medicine
  • 机构:深圳市龙华区人民医院急诊科;
  • 出版日期:2019-01-09 09:16
  • 出版单位:生物医学工程与临床
  • 年:2019
  • 期:v.23;No.109
  • 基金:深圳市龙华区科技计划项目(20160831A1030202)
  • 语种:中文;
  • 页:SGLC201901006
  • 页数:6
  • CN:01
  • ISSN:12-1329/R
  • 分类号:40-45
摘要
目的探讨选择性脑部亚低温的应用时机对急诊心跳骤停患者神经功能的影响。方法选择心跳骤停患者120例,其中男性89例,女性31例;年龄18~60岁,平均年龄51.84岁。按照脑部亚低温的应用时机分为3组,即基本生命支持阶段组(A组)、高级生命支持阶段组(B组)和后续生命支持阶段组(C组),每组40例。A组男性29例,女性11例;年龄18~59岁,平均年龄50.91岁。B组男性31例,女性9例;年龄18~60岁,平均年龄52.04岁。C组男性29例,女性11例;年龄19~58岁,平均年龄51.73岁。患者神经功能在自主循环恢复24 h、7 d采用格拉斯哥昏迷量表(GCS)评分评价,自主循环恢复3个月应用简易精神状态评价量表(MMSE)评分评价,根据MMSE评分评价结果,把患者分为神经功能正常组和认知障碍组行比较分析。结果 A组自主循环恢复24 h存活24例,7 d存活18例,3个月存活16例。B组自主循环恢复24 h存活25例,7 d存活17例,3个月存活15例。C组自主循环恢复24 h存活26例,7 d存活18例,3个月存活15例。3组生存率比较,差异无统计学意义(P> 0.05)。3组24 h GCS评分和7 d GCS评分差异无统计学意义(F=0.131、0.842,P> 0.05);3个月MMSE评分,A组> B组> C组,3组两两比较,差异均有统计学意义(P <0.05)。自主循环恢复3个月时,生存患者中神经功能正常27例,认知障碍19例;3组认知障碍发生率两两之间差异均有统计学意义(χ~2=6.255,P <0.05)。单因素和多因素非条件性Logistic回归分析显示,无脑干反射、心肺复苏实施时间> 5 min、自主循环恢复时间> 10 min、心跳骤停至药物使用时间> 5 min及脑部降温时机延迟为心跳骤停生存患者认知障碍的危险因素。结论选择性脑部亚低温的应用时机对急诊心跳骤停患者神经功能具有一定的影响,基本生命支持阶段优于高级生命支持阶段,高级生命支持阶段优于后续生命支持阶段。
        Objective To explore the influence of application timing on selective brain mild hypothermia nervous function in patients with cardiac arrest. Methods A total of 120 patients with cardiac arrest were enrolled, included 89 males and 31 females, aged 18-60 years old with mean age of 51.84 years old. They were divided into 3 groups by brain hypothermia application timing, which were basic life support stage group(group A, n = 40, 29 males and 11 females; aged 18-59 years old with mean age of 50.91 years old), advanced life support stage group(group B, n = 40, 31 males and 9 females; aged 18-60 years old with mean age of 52.04 years old) and subsequent life support stage group(group C, n = 40, 29 males and 11 females; aged 19-58 years old with mean age of 51.73 years old). The nervous function of patients was assessed on 24 hours and 7 th day of spontaneous circulation recovery by Glasgow coma scale(GCS) score, and mini-mental state examination(MMSE) 3 months after restoration spontaneous circulation. The patients were divided into normal nerve function group and cognitive dysfunction group for comparative analysis according to the MMSE score. Results In group A, 24 patients survived at 24 hours after restoration spontaneous circulation, 18 survived at 7 days and 16 survived at 3 months. In group B, 25 patients survived at 24 hours after restoration spontaneous, at 17 survived 7 days and 15 survived at 3 months. In group C, 26 patients survived at 24 hours after restoration spontaneous circulation, 18 survived at 7 days and 15 survived at 3 months, and there was no significant difference in survival rate in 3 groups(P > 0.05). There was no statistical difference between 24 hours GCS scores and 7 days GCS scores in groups(F = 0.131,F = 0.842, P > 0.05). In 3-month MMSE score, group A > group B > group C, and the difference was statistically significant in 3 groups(P < 0.05). There were 27 cases of normal nerve function and 19 cases of cognitive dysfunction in survival patients at3 months after restoration spontaneous circulation, and the difference of incidence of cognitive dysfunction were statistically significant in 3 groups(χ~2= 6.255, P < 0.05). The single factor and multiple factors of conditional Logistic regression analysis showed that brainless reflection, cardiopulmonary resuscitation implementation time > 5 minutes, spontaneous circulation restoration time > 10 minutes, time of cardiac arrest to medicate > 5 minutes and selective brain mild hypothermia time delay were the risk factors of cognitive dysfunction in patients with cardiac arrest. Conclusion It is demonstrated that the application timing of selective brain mild hypothermia in patients with cardiac arrest showed a certain influence on nervous function. The basic life support stage is superior to the advanced life support stage, and which is superior to the subsequent life support stage.
引文
[1] Weisfeldt ML, Pollack RA. Public access defibrillation:is this making any difference? Controversial issues in resuscitation from cardiac arrest[J]. Card Electrophysiol Clin, 2017, 9(4):551-557.
    [2] Oh JS, Tulasi J, Xiaodan R, et al. Valproic combined with postcardiac arrest hypothermic-targeted temperature management prevents delayed seizures and improves survival in a rat cardiac arrest model[J]. Crit Care Med, 2017, 45(11):e1149-e1156.
    [3] LIANG Dong-mei. Cases analysis of the resuscitation of 200cardiac arrest patients in hospital[D]. Changchun:Jilin University, 2015:1-40.[梁冬梅. 200例院内心脏骤停患者复苏的病例分析[D].长春:吉林大学, 2015:1-40.]
    [4] Fukuda K, Kanazawa H, Yoshiyasu A, et al. Cardiac innervation and sudden cardiac death[J]. Circulation Research, 2015,116(12):2005-2019.
    [5] Rittenberger JC, Friess S, Polderman KH. Emergency neurological life support:resuscitation following cardiac arrest[J].Neurocrit Care, 2015, 23(Suppl 2):S119-S128.
    [6] REN Yi-pin, ZHOU Hou-rong, TANG Xu, et al. Protective effects of mild hypothermia on brain and cooling timing after cardiac arrest-cardiopulmonary resuscitation in anoxia-induced rats[J]. Guangdong Medical Journal, 2014, 35(3):345-349.[任亦频,周厚荣,汤旭,等.亚低温治疗及选择时机对窒息大鼠心肺复苏后的脑保护作用[J].广东医学,2014,35(3):345-349.]
    [7] WANG Dong-xin. The analysis about the risk factors for cognitive dysfunction in patients with atrial fibrillation[D].Tianjin:Tianjin Medical University, 2016.[王东昕.房颤患者合并认知功能障碍的危险因素分析[D].天津:天津医科大学,2016.]
    [8] Wind AW, Schellevis FG, Van Staveren G, et al. Limitations of the mini-mental state examination in diagnosing dementia in general practice[J]. Int Geriatr Psychiatry, 1997, 12(1):101-108.
    [9] Nakayama S, Amiry-Moghaddam M, Ottersen OP, et al. Conivaptan, a selective arginine vasopressin V1a and V2 receptor antagonist attenuates global cerebral edema following experimental cardiac arrest via perivascular pool of aquaporin-4[J].Neurocrit Care, 2016, 24(2):273-282.
    [10] Spinelli E, Davis RP, Ren X, et al. Thrombolytic-enhanced extracorporeal cardiopulmonary resuscitation after prolonged cardiacarrest[J]. Crit Care Med, 2016, 44(2):e58-e69.
    [11] Rabinstein AA. How cool it is:targeted temperature management for brain protection post-cardiac arrest[J]. Semin Respir Crit Care Med, 2016, 37(1):34-41.
    [12] CHEN Yu-xi, LIAO Xin-jun, CHEN Hong-hui, et al. Protective of brain tissue and effects of sub-hypothermia therapy on the S100B protein level in rats after cardiopulmonary resuscitation[J]. Modern Practical Medicine, 2015, 27(12):1569-1570.[陈玉熹,缪心军,陈红辉,等.亚低温治疗对心肺复苏后大鼠S100B蛋白水平的影响和脑组织保护作用的研究[J].现代实用医学,2015,27(12):1569-1570.]
    [13] LI Jing, WEI Yan, LI Jing. Effect of sub-hypothermia treatment on patients undergoing cardiopulmonary resuscitation and corresponding nursing care[J]. Contemporary Medicine Forum, 2015, 13(18):68-70.[李静,魏艳,李婧.对行心肺复苏的患者进行亚低温治疗及相应护理的效果分析[J].当代医药论丛,2015,13(18):68-70.]
    [14] WEN Xi. Influence of right mild hypothermia on advanced life support for patients with cardiopulmonary arrest[J]. Youjiang Medical Journal, 2014, 42(1):38-40.[文曦.亚低温对心跳呼吸骤停患者高级生命支持的影响[J].右江医学,2014,42(1):38-40.]
    [15] Kim F, Nichol G, Maynard C, et al. Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest:a randomized clinical trial[J]. JAMA, 2014, 311(1):45-52.
    [16] JI Xian-fei, SHANG De-ya, LI Chun-sheng. The time of the application of sub-hypothermia in cardiopulmonary resuscitation[C]. The Capital Urgent Critical Disease Medical Summit Forum Session VI. 2013:319-319.[季宪飞,商德亚,李春盛.心肺复苏中实施亚低温的时机选择[C].第六届首都急危重症医学高峰论坛. 2013:319-319.]
    [17] Takenouchi T, Sugiura Y, Morikawa T, et al. Therapeutic hypothermia achieves neuroprotection via a decrease in acetylcholine with a concurrent increase in carnitine in the neonatal hypoxia-ischemia[J]. J Cereb Blood Flow Metab, 2015, 35(5):794-805.
    [18] Chen J, Fredrickson V, Ding Y, et al. The effect of a microcatheter-based selective intra-arterial hypothermia on hemodynamic changes following transient cerebral ischemia[J]. Neurol Res, 2015, 37(3):263-268.
    [19] Li JH, Zhang X, Meng Y, et al. Cold inducible RNA-binding protein inhibits hippocampal neuronal apoptosis under hypothermia by regulating redox system[J]. Sheng Li Xue Bao,2015, 67(4):386-392.[李静辉,张雪,孟宇,等.亚低温状态下冷诱导RNA结合蛋白调节氧化还原系统对海马神经元的保护作用[J].生理学报,2015,67(4):386-392.]
    [20] Potla R, Singh IS, Atamas SP, et al. Shifts in temperature within the physiologic range modify strand-specific expression of select human microRNAs[J]. RNA, 2015, 21(7):1261-1273.
    [21] Antonic A, Dottori M, Leung J, et al. Hypothermia protects human neurons[J]. Int J Stroke, 2014, 9(5):544-552.
    [22] ZHANG Zu-qin, LI Wei. Impact of the low temperature treatment starting time on prognosis of coma patients after cardiac arrest resuscitation[J]. China Modern Medicine, 2015,22(34):52-54.[张族勤,李伟.亚低温治疗开始时机对心脏骤停复苏后昏迷患者预后的影响[J].中国当代医药,2015,22(34):52-54.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700