小麦TaNAM三个部分同源基因的特征及其对渗透胁迫的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characterization of Three Homoeologous TaNAM Genes and Their Response to Osmotic Stress in Wheat
  • 作者:张琳 ; 王瀑童 ; 常亚南 ; 李梦园 ; 袁晓波 ; 樊亚栋 ; 尹钧 ; 孟凡荣 ; 李永春
  • 英文作者:Zhang Lin;Wang Putong;Chang Ya'nan;Li Mengyuan;Yuan Xiaobo;Fan Yadong;Yin Jun;Meng Fanrong;Li Yongchun;College of Life Science,Henan Agricultural University;College of Agronomy,Henan Agricultural University;
  • 关键词:小麦 ; NAC转录因子 ; 渗透胁迫 ; 基因表达
  • 英文关键词:Wheat;;NAC transcription factor;;Osmotic stress;;Gene expression
  • 中文刊名:FZZW
  • 英文刊名:Molecular Plant Breeding
  • 机构:河南农业大学生命科学学院;河南农业大学农学院;
  • 出版日期:2019-02-28
  • 出版单位:分子植物育种
  • 年:2019
  • 期:v.17
  • 基金:国家重点研发计划(2017YFD0301101);; 国家科技支撑计划(2015BAD26B01);; 国家自然科学基金(31571655)共同资助
  • 语种:中文;
  • 页:FZZW201904052
  • 页数:10
  • CN:04
  • ISSN:46-1068/S
  • 分类号:74-83
摘要
干旱是限制小麦持续高产稳产的主要逆境因子,本研究克隆了受干旱胁迫诱导的小麦NAC转录因子的3个部分同源基因Ta NAM-5AL、TaNAM-5BL和Ta NAM-5DL,结果表明,在cDNA编码区A、B和D基因组间存在SNP和InDel变异,但内含子和启动子区域基因组之间差异较大。蛋白特性分析显示,其均有典型NAC结构域,其中A、C、D亚结构域高度保守,而B和E亚结构域保守性不强。蛋白质高级结构分析显示,TaNAM蛋白可形成由2个α螺旋和9个β折叠组成的半桶状结构,2个TaNAM单体通过N端互作形成1个夹子状二聚体。时空表达特性分析表明,3个部分同源基因在根系中表达量最高,叶片和茎干中的表达量较低。在小麦籽粒萌发过程中,随着胚及幼芽的萌发TaNAM-5DL的表达量逐渐上调;在籽粒形成过程中,TaNAM-5BL在5 DAP时表达量很高,而TaNAM-5AL和TaNAM-5DL在30 DAP时表达量最高。在叶片和根系中,3个部分同源基因均受水分胁迫的诱导而上调表达,且根系中的响应速度显著快于叶片。在盐胁迫条件下,叶片中3个部分同源基因均受胁迫诱导而上调表达,而根系中仅TaNAM-5AL受胁迫诱导而持续上调表达。进一步分析发现,3个部分同源基因属于依赖ABA的调控通路。上述结果表明TaNAM的3个部分同源基因在胁迫和发育调控中发挥着不同的功能。
        Drought is a main stress factor that restricts the growth and development of wheat. In this study, three homoeologues(TaNAM-5 AL, TaNAM-5 BL, TaNAM-5 DL) of NAC transcription factor induced by drought stress,were cloned. The results showed that there were SNP and In Del variations among the genomes A, B and D in coding region of cDNA, but the genomes in the inron and promoter regions were quite different. The protein characterization showed that all of them had typical NAC domains, and the subdomains A, C and D were tightly conserved, while the subdomains B and E were weakly conserved. The advanced structure analysis demonstrated that the TaNAM protein could fold up into a semi-barrel structure formed by two α-helices and nine twistedβ-sheets. The two TaNAM monomers interacted with each other by N-terminal regions and formed a C-clamps shape dimeric architecture. The spatiotemporal expression analysis indicated that three homoeogues were predominantly expressed in root, while weakly expressed in leaf and stem tissues. During the germination of wheat seeds, the expression of TaNAM-5 DL was gradually up-regulated with the germination of embryo and bud. During the formation of grains, TaNAM-5 BL was highly expressed at 5 days after pollination(DAP). The expression of TaNAM-5 AL and TaNAM-5 DL reached the highest level of expression at 30 DAP. In leaf and root tissues, all of them were induced by water stress and the response speed was significantly quicker in roots than that in leaves.Under the saline stress, all of three homoeologues were induced by the osmotic stress in leaf tissues, while only TaNAM-5 AL was up-regulated in root tissues. Additionally, the expression profiling revealed that the three homoeologues were regulated by ABA dependent signal pathway. The above results implied that the three homoeologues of TaNAM might play different roles under osmotic stress and development regulation in wheat.
引文
Chen D.D.,Chai S.C.,McIntyre C.L.,and Xue G.P.,2018,Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length,biomass and drought tolerance,Plant Cell Rep.,37(2):225-237
    Gahlaut V.,Jaiswal V.,Kumar A.,and Gupta P.K.,2016,Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat(Triticum aestivum L.),Theor.Appl.Genet.,129(11):2019-2042
    Gaponenko A.K.,Shulga O.A.,Mishutkina Y.B.,Tsarkova E.A.,Timoshenko A.A.,and Spechenkova N.A.,2018,Perspectives of use of transcription factors for improving resistance of wheat productive varieties to abiotic stresses by transgenic technologies,Russ.J.Genet.,54(1):27-35
    Hadiarto T.,and Tran L.S.P.,2011,Progress studies of drought-responsive genes in rice,Plant Cell Rep.,30(3):297-310
    Jeong J.S.,Kim Y.S.,Baek K.H.,Jung H.,Ha S.H.,Choi Y.D.,Kim M.,Reuzeau C.,and Kim J.K.,2010,Root-specific expression of Os NAC10 improves drought tolerance and grain yield in rice under field drought conditions,Plant Physiol.,153(1):185-197
    Li Y.C.,Meng F.R.,Wang X.,Chen L.,Ren J.P.,Niu H.B.,Li L.,and Yin J.,2008,Gene expression profiling in roots of wheat cultivar'Luohan 2''under water stress,Zuowu Xuebao(Acta Agronomica Sinica),34(12):2126-2133(李永春,孟凡荣,王潇,陈雷,任江萍,牛洪斌,李磊,尹钧,2008,水分胁迫条件下'洛旱2号'小麦根系的基因表达谱,作物学报,34(12):2126-2133)
    Li Y.C.,Meng F.R.,Zhang C.Y.,Zhang N.,Sun M.S.,Ren J.P.,Niu H.B.,Wang X.,and Yin J.,2012,Comparative analysis of water stress-responsive transcriptomes in drought-susceptible and tolerant wheat(Triticum aestivum L.),J.Plant Biol.,55(5):349-460
    Liu Y.M.,Yu X.W.,Liu S.S.,Peng H.,Mijiti A.,Wang Z.,Zhang H.,and Ma H.,2017,A chickpea NAC-type transcription factor,CarNAC6,confers enhanced dehydration tolerance in Arabidopsis,Plant Mol.Biol.Rep.,35(1):83-96
    Liu Z.C.,Miao L.L.,Wang J.Y.,Yang D.L.,Mao X.G.,and Jing R.L.,2016,Cloning and characterization of transcription factor TaWRKY35 in wheat(Triticum aestivum),Zhongguo Nongye Kexue(Scientia Agricultura Sinica),49(12):2245-2254(刘自成,苗丽丽,王景一,杨德龙,毛新国,景蕊莲,2016,普通小麦转录因子基因TaWRKY35的克隆及功能分析,中国农业科学,49(12):2245-2254)
    Mao X.G.,Zhang H.Y.,Qian X.Y.,Li A.,Zhao G.Y.,and Jing R.L.,2012,TaNAC2,a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis,J.Exp.Bot.,63(8):2933-2946
    Moshelion M.,and Altman A.,2015,Current challenges and future perspectives of plant and agricultural biotechnology,Trends Biotechnol.,33(6):337-342
    Munemasa S.,Hauser F.,Park J.Y.,Waadt R.,Brandt B.J.,and Schroeder J.L.,2015,Mechanisms of abscisic acid-mediated control of stomatal aperture,Curr.Opin.Plant Biol.,28:154-162
    Nuruzzaman M.,Manimekalai R.,Sharoni A.M.,Satoh K.,Kondoh H.,Ooka H.,and Kikuchi S.,2010,Genome-wide analysis of NAC transcription factor family in rice,Gene,465(1):30-44
    Ooka H.,Satoh K.,Doi K.,Nagata T.,Otomo Y.,Murakami K.,Matsubara K.,Osato N.,Kawai J.,Carninci P.,Hayashizaki Y.,Suzuki K.,Kojima K.,Takahara Y.,Yamamoto K.,and Kikuchi S.,2003,Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana,DNA Res.,10(6):239-247
    Rogers E.D.,and Benfey P.N.,2015,Regulation of plant root system architecture:implications for crop advancement,Curr.Opin.Biotechnol.,32:93-98
    Ryu H.,and Cho Y.G.,2015,Plant hormones in salt stress tolerance,J.Plant Biol.,58(3):147-155
    Saidi M.N.,Mergby D.,and Brini F.,2017,Identification and expression analysis of the NAC transcription factor family in durum wheat(Triticum turgidum L.ssp.durum),Plant Physiol.Bioch.,112:117-128
    Singh D.,and Laxmi A.,2015,Transcriptional regulation of drought response:a tortuous network of transcriptional factors,Front Plant Sci.,6:895
    Soma F.,Mogami J.,Yoshida T.,Abekura M.,Takahashi F.,Kidokoro S.,Mizoi J.,Shinozaki K.,and Yamaguchi-Shinozaki K.,2017,ABA-unresponsive SnRK2 protein kinases regulate m RNA decay under osmotic stress in plants,Nat.Plants,3(1):16204
    Tran L.S.P.,Urao T.,Qin F.,Maruyama K.,Kakimoto T.,Shinozaki K.,and Yamaguchi-Shinozaki K.,2007,Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid,drought,and salt stress in Arabidopsis,Proc.Natl.Acad.Sci.USA,104(51):20623-20628
    Yoshida T.,Mogami J.,and Yamaguchi-Shinozaki K.,2014,A-BA-dependent and ABA-independent signaling in response to osmotic stress in plants,Curr.Opin.Plant Biol.,21:133-139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700