不同碳负荷梯度下稻田土壤有机碳矿化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characterization of Soil Organic Carbon Mineralization Under Different Gradient Carbon Loading in Paddy Soil
  • 作者:童瑶瑶 ; 王季斐 ; 祝贞科 ; 邓扬悟 ; 陈珊 ; 葛体达 ; 袁红朝 ; 吴金水
  • 英文作者:TONG Yao-yao;WANG Ji-fei;ZHU Zhen-ke;DENG Yang-wu;CHEN Shan;GE Ti-da;YUAN Hong-zhao;WU Jin-shui;School of Resources and Environmental Engineering,Jiangxi University of Science and Technology;Key Laboratory of Subtropical Agriculture Ecology,Institute of Subtropical Agriculture,Chinese Academy of Sciences;College of Environmental Science and Engineering,Central South University of Forestry and Technology;
  • 关键词:水稻土 ; 碳固持 ; 易利用态碳 ; 碳负荷 ; ~(13)C同位素示标记 ; 激发效应
  • 英文关键词:paddy soil;;carbon sequestration;;readily available carbon;;carbon loading;;~(13)C-labelled glucose;;priming effect
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:江西理工大学资源与环境工程学院;中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室;中南林业科技大学环境科学与工程学院;
  • 出版日期:2018-10-15 16:46
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51564023);; 江西省自然科学基金项目(20114BAB213019);; 江西省科技支撑计划项目(20151BBG70005);; 江西理工大学2018年研究生创新基金项目;; 2016年中国科学院仪器功能开发项目
  • 语种:中文;
  • 页:HJKZ201903055
  • 页数:8
  • CN:03
  • ISSN:11-1895/X
  • 分类号:475-482
摘要
易利用态有机碳是土壤微生物的重要碳源,影响土壤有机碳的矿化和累积过程,而易利用态碳源的输入量尤其是相对于土壤微生物生物量碳的不同输入负荷,对土壤有机碳的矿化影响机制尚不明确.因此,本研究采取室内模拟培养实验,选择不同浓度梯度添加[0. 5、1、3、5倍微生物量碳(MBC)]~(13)C-葡萄糖,分析葡萄糖-C的矿化特征及其激发效应.结果表明,葡萄糖-C矿化率随着外源碳添加量的增加而显著增加;葡萄糖-C向快库、慢库分配的比例也分别与碳添加量呈指数关系(R~2=0. 99,P <0. 05和R~2=0. 99,P <0. 05).在高添加量处理(3×MBC、5×MBC)中,葡萄糖的添加抑制土壤原有有机碳的矿化,即表现出负激发效应;而在低添加量处理(0. 5×MBC、1×MBC)中,表现为正激发效应,60 d培养结束后累积激发效应分别为160. 0 mg·kg~(-1)和325. 1 mg·kg~(-1).相关性分析结果表明在培养实验前期,累积激发效应主要受MBC、MBN和DOC的影响,而在后期主要β-葡糖苷酶、几丁质酶和铵态氮的影响.因此,稻田土壤有机碳矿化和激发效应与易利用态有机碳添加的碳负荷密切相关,并通过微生物量和酶活性调控土壤碳的矿化过程.本研究对于揭示稻田有机碳累积行为与推动农业可持续发展具有重要的科学意义.
        Available carbon is the most active part of the soil carbon pool. It is also the main carbon source of soil microbes and plays an important role in the processes of soil organic carbon mineralization and accumulation. However,the mechanisms are still not clear how soil organic carbon mineralization and its priming effect( PE) are affected by different input levels of readily available carbon,based on the growth requirements of microbes in paddy soil. In this study,an incubation experiment was conducted by adding different levels( 0. 5,1,3,and 5 times of MBC) of exogenous source organic carbon(~(13)C-glucose) to the soil. The mineralization dynamics of labile organic carbon and its priming effect was investigated. The mineralization rate of glucose-C increased significantly with the increasing carbon loading level. The distribution of glucose-C into rapid and slow C pools was also exponentially correlated with the carbon loading( R~2= 0. 99,P < 0. 05 and R~2= 0. 99,P < 0. 05,respectively). Negative PE was observed at high carbon loading( 3 ×MBC and 5 × MBC); while positive PE was induced by low carbon loading( 0. 5 × MBC and 1 × MBC). The cumulative PE was 160. 0 mg·kg~(-1) and 325. 1 mg·kg~(-1),respectively,at the end of the incubation. Redundancy analysis showed that the main factors affecting the cumulative PE were MBC,MBN,and DOC at the initial glucose mineralization stage,while β-glucosidase,chitinase,and ammonium nitrogen were the main factors at later stages. Therefore,the readily available carbon loading has an important effect on the organic carbon mineralization and PE in paddy soil. Higher carbon loading was good for the accumulation of organic carbon sequestration in paddy soil. This study is of great scientific significance for revealing the activity of organic carbon in paddy fields and for its contribution to the development of sustainable agriculture.
引文
[1]冯嘉仪,储双双,王婧,等.华南地区几种典型人工林土壤有机碳密度及其与土壤物理性质的关系[J].华南农业大学学报,2018,39(1):83-90.Feng J Y,Chu S S,Wang J,et al.Soil organic carbon density and its relationship with soil physical properties of typical plantations in South China[J].Journal of South China Agricultural University,2018,39(1):83-90.
    [2]Angst G,Mueller K E,Kogel-Knabner I,et al.Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter[J].Biogeochemistry,2017,132(3):307-324.
    [3]Pump J,Conrad R.Rice biomass production and carbon cycling in13C O2pulse-labeled microcosms with different soils under submerged conditions[J].Plant and soil,2014,384(1-2):213-229.
    [4]叶功富,尤龙辉,卢昌义,等.全球气候变化及森林生态系统的适应性管理[J].世界林业研究,2015,28(1):1-6.Ye G F,You L H,Lu C Y,et al.Global climate change and adaptive management of forest ecosystem[J].World Forestry Research,2015,28(1):1-6.
    [5]徐嘉晖,孙颖,高雷,等.土壤有机碳稳定性影响因素的研究进展[J].中国生态农业学报,2018,26(2):222-230.Xu J H,Sun Y,Gao L,et al.A review of the factors influencing soil organic carbon stability[J].Chinese Journal of EcoAgriculture,2018,26(2):222-230.
    [6]Wang H,Boutton T W,Xu W H,et al.Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes[J].Scientific Reports,2015,5:10102.
    [7]Blagodatsky S,Blagodatskaya E,Yuyukina T,et al.Model of apparent and real priming effects:linking microbial activity with soil organic matter decomposition[J].Soil Biology and Biochemistry,2010,42(8):1275-1283.
    [8]Kuzyakov Y,Friedel J K,Stahr K.Review of mechanisms and quantification of priming effects[J].Soil Biology and Biochemistry,2000,32(11-12):1485-1498.
    [9]戚瑞敏,赵秉强,李娟,等.添加牛粪对长期不同施肥潮土有机碳矿化的影响及激发效应[J].农业工程学报,2016,32(S2):118-127.Qi R M,Zhao B Q,Li J,et al.Effects of cattle manure addition on soil organic carbon mineralization and priming effects under long-term fertilization regimes[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(S2):118-127.
    [10]葛晓改,周本智,肖文发,等.生物质炭输入对土壤碳排放的激发效应研究进展[J].生态环境学报,2016,25(2):339-345.Ge X G,Zhou B Z,Xiao W F,et al.Priming effect of biochar addition on soil carbon emission:a review[J].Ecology and Environmental Sciences,2016,25(2):339-345.
    [11]苗淑杰,乔云发,张福韬.黑土团聚体碳矿化和小麦秸秆对其的激发效应[J].水土保持学报,2014,28(4):218-221.Miao S J,Qiao Y F,Zhang F T.Priming effect of wheat straw addition on organic carbon mineralization in various aggregates of black soil[J].Journal of Soil and Water Conservation,2014,28(4):218-221.
    [12]Blagodatskaya E,Kuzyakov Y.Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure:critical review[J].Biology and Fertility of Soils,2008,45(2):115-131.
    [13]程璞,张慧,陈健.进水碳负荷浓度对垂直潜流式人工湿地中植物根系微生物动态的影响[J].环境工程学报,2014,8(5):2006-2012.Cheng P,Zhang H,Chen J.Effects of influent carbon loading on rhizosphere microbial diversity in vertical subsurface-flow constructed wetland[J].Chinese Journal of Environmental Engineering,2014,8(5):2006-2012.
    [14]Guenet B,Neill C,Bardoux G,et al.Is there a linear relationship between priming effect intensity and the amount of organic matter input?[J].Applied Soil Ecology,2010,46(3):436-442.
    [15]Hütsch B W,Augustin J,Merbach W.Plant rhizodeposition-an important source for carbon turnover in soils[J].Journal of Plant Nutrition and Soil Science,2002,165(4):397-407.
    [16]Yevdokimov I,Ruser R,Buegger F,et al.Microbial immobilisation of13C rhizodeposits in rhizosphere and root-free soil under continuous13C labelling of oats[J].Soil Biology and Biochemistry,2006,38(6):1202-1211.
    [17]Blagodatskaya E V,Blagodatsky S A,Anderson T H,et al.Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies[J].Applied Soil Ecology,2007,37(1-2):95-105.
    [18]鲍士旦.土壤农化分析[M].(第三版).北京:中国农业出版社,2000.
    [19]Loeppmann S,Blagodatskaya E,Pausch J,et al.Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere[J].Soil Biology and Biochemistry,2016,92:111-118.
    [20]Tian Q X,Yang X L,Wang X G,et al.Microbial community mediated response of organic carbon mineralization to labile carbon and nitrogen addition in topsoil and subsoil[J].Biogeochemistry,2016,128(1-2):125-139.
    [21]Chen R R,Senbayram M,Blagodatsky S,et al.Soil C and Navailability determine the priming effect:microbial N mining and stoichiometric decomposition theories[J].Global Change Biology,2014,20(7):2356-2367.
    [22]Sinsabaugh R L,Manzoni S,Moorhead D L,et al.Carbon use efficiency of microbial communities:stoichiometry,methodology and modelling[J].Ecology Letters,2013,16(7):930-939.
    [23]Blagodatskaya E,Kuzyakov Y.Active microorganisms in soil:critical review of estimation criteria and approaches[J].Soil Biology and Biochemistry,2013,67:192-211.
    [24]Petersen B M,Jensen L S,Hansen S,et al.CN-SIM:a model for the turnover of soil organic matter.II.Short-term carbon and nitrogen development[J].Soil Biology and Biochemistry,2005,37(2):375-393.
    [25]Grace P R,Ladd J N,Robertson G P,et al.SOCRATES-a simple model for predicting long-term changes in soil organic carbon in terrestrial ecosystems[J].Soil Biology and Biochemistry,2006,38(5):1172-1176.
    [26]Dharmakeerthi R S,Hanley K,Whitman T,et al.Organic carbon dynamics in soils with pyrogenic organic matter that received plant residue additions over seven years[J].Soil Biology and Biochemistry,2015,88:268-274.
    [27]Lu Y H,Watanabe A,Kimura M.Contribution of plant-derived carbon to soil microbial biomass dynamics in a paddy rice microcosm[J].Biology and Fertility of Soils,2002,36(2):136-142.
    [28]Gunina A,Kuzyakov Y.Sugars in soil and sweets for microorganisms:review of origin,content,composition and fate[J].Soil Biology and Biochemistry,2015,90:87-100.
    [29]Baumann K,Marschner P,Smernik R J,et al.Residue chemistry and microbial community structure during decomposition of eucalypt,wheat and vetch residues[J].Soil Biology and Biochemistry,2009,41(9):1966-1975.
    [30]Brant J B,Sulzman E W,Myrold D D.Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation[J].Soil Biology and Biochemistry,2006,38(8):2219-2232.
    [31]Kuzyakov Y.Review:factors affecting rhizosphere priming effects[J].Journal of Plant Nutrition and Soil Science,2002,165(4):382-396.
    [32]Zhu Z K,Ge T D,Luo Y,et al.Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil[J].Soil Biology and Biochemistry,2018,121:67-76.
    [33]李猛,张恩平,张淑红,等.长期不同施肥设施菜地土壤酶活性与微生物碳源利用特征比较[J].植物营养与肥料学报,2017,23(1):44-53.Li M,Zhang E P,Zhang S H,et al.Comparison of soil enzyme activities and microbial C metabolism in installed vegetable fields under long-term different fertilization[J].Journal of Plant Nutrition and Fertilizer,2017,23(1):44-53.
    [34]Ali R S,Kandeler E,Marhan S,et al.Controls on microbially regulated soil organic carbon decomposition at the regional scale[J].Soil Biology and Biochemistry,2018,118:59-68.
    [35]王霏,王绍琛,曹明明,等.土壤微生物中新型β-葡萄糖苷酶的挖掘与鉴定[J].微生物学通报,2018,45(1):71-80.Wang F,Wang S C,Cao M M,et al.A novelβ-glucosidase from soil microbes[J].Microbiology China,2018,45(1):71-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700