直流式风洞风扇段三维流场特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of three-dimensional flow field of fan section in straight-flow wind tunnel
  • 作者:易小军 ; 张磊 ; 邓磊 ; 周锐
  • 英文作者:YI Xiaojun;ZHANG Lei;DENG Lei;ZHOU Rui;
  • 关键词:直流式风洞 ; 风扇系统 ; 三维流场特性 ; 流固耦合分析
  • 英文关键词:straight-flow wind tunnel;;fan system;;three-dimensional flow field characteristics;;fluid-solid coupling analysis
  • 中文刊名:XDJX
  • 英文刊名:Modern Machinery
  • 机构:武汉理工大学机械工程学院;
  • 出版日期:2018-02-28
  • 出版单位:现代机械
  • 年:2018
  • 期:No.203
  • 语种:中文;
  • 页:XDJX201801016
  • 页数:6
  • CN:01
  • ISSN:52-1046/TH
  • 分类号:68-73
摘要
针对某直流低速风洞风扇段的三维流场特性,研究了风扇系统中风扇、整流罩、止旋片三种部件对风扇段三维流场特性的影响情况。对比并分析只有风扇、有风扇与整流罩、有整流罩和风扇以及止旋片的三种结构的风扇系统对于风扇段内部流场速度分布、出口处湍流强度以及流场迹线的影响,研究发现:整流罩、止旋片两个部件对于风扇段内部流场质量具有显著的提升作用。对比并分析风扇叶片数依次为5、7、9,风扇安装角依次是35°、40°、45°,整流罩及止旋片结构不变情况下的共9组风扇系统模型对风扇段内部流场压力分布、速度分布以及流场流线等气动特性的影响,研究发现:风扇叶片安装角为35°,叶片数为5时风扇段内部流场特性最好,安装角为35°,叶片数为5是扇叶的最终选择参数。最后,针对叶片数为5,安装角35°结构的扇叶进行流固耦合分析,模拟仿真发现风扇5个叶片受力情况一致,其中叶尖部位的变形量最大,最大应力集中在叶根部位,符合风洞设计要求。
        Aimed at the 3 D flow field characteristics of fan section of straight-flow low-speed wind tunnel,the influence of fan,fairing and straightening vanes in fan system on the three-dimensional flow field characteristics of fan section were studied. The characteristics of the three types of fan systems with the fan only,with the fan and the fairing,with the fairing,the fan and straightening vanes were compared. The velocity distribution inside the fan section,the turbulence intensity at the outlet and the trajectory of flow field of the three fan systems were obtained. It was found that the two parts of the fairing and the straightening vanes have a significant effect on the quality of the flow field in the fan section. When the installation angle of fan blade is 35 degrees and the number of blades is 5,the flow field in the fan section is the best. The fluid solid coupling analysis of the fan blades was carried out. The simulation results showed that the stress of the 5 blades is the same.The deformation of the blade tip is the largest and the stress of the blade root is largest,which accords with the design requirement of the wind tunnel.
引文
[1]STATHOPOULOS T.Design and fabrication of a wind tunnel for building aerodynamics[J].Journal of Wind Engineering&Industrial Aerodynamics,1984,16(2-3):361-376.
    [2]MOONENA P,BLOCKENA B,ROELSA S,et al.Numerical modeling of the flow conditions in a closed-circuit low-speed wind tunnel[J].Journal of Wind Engineering&Industrial Aerodynamics,2006,94(10):699-723.
    [3]SELIG S,MCGRANA B D.Wind tunnel aerodynamic tests of six airfoils for use on small wind turbines[J].Journal of Solar Energy Engineering.2004,126(4):986-1001.
    [4]王文奎,石柏军.低速风洞洞体设计[J].机床与液压,2008(5):93-95.
    [5]李强,丁珏,翁培奋.上海大学低湍流度低速风洞及气动设计[J].上海大学学报(自然科学版),2007,13(2):203-207.
    [6]贾青,杨志刚,李启良.汽车风洞试验段流场的试验研究[J].实验流体力学,2011,25(6):33-37.
    [7]仇健.基于CFD的汽车风洞收缩段设计及流场品质分析[D].长沙:湖南大学,2011.
    [8]罗振东.发动机冷却风扇气固耦合振动研究[D].广州:华南理工大学,2012.
    [9]唐志共,许晓斌,杨彦广,等.高超声速风洞气动力试验技术进展[J].航空学报,2015,36(1):86-97.
    [10]刘周,朱自强,付鸿雁.高升阻比翼型的设计[J].空气动力学学报,2004,22(4):410-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700