用于低温保护剂混合的微流控芯片设计及优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Optimization of Microfluidic Chips Used for Mixing Cryoprotectants
  • 作者:周新丽 ; 衣星越 ; 周楠峰 ; 杨云
  • 英文作者:ZHOU Xinli;YI Xingyue;ZHOU Nanfeng;YANG Yun;Institute of Biothermal Technology,University of Shanghai for Science and Technology;
  • 关键词:低温保护剂 ; 渗透损伤 ; 微流控芯片 ; 混合效率
  • 英文关键词:cryoprotectants;;osmotic damage;;microfluidic chip;;mixing efficiency
  • 中文刊名:SWGC
  • 英文刊名:Journal of Biomedical Engineering
  • 机构:上海理工大学生物热科学研究所;
  • 出版日期:2016-06-25
  • 出版单位:生物医学工程学杂志
  • 年:2016
  • 期:v.33
  • 基金:国家自然科学基金资助项目(51376132);; 上海市自然科学基金资助项目(13ZR1429200)
  • 语种:中文;
  • 页:SWGC201603011
  • 页数:5
  • CN:03
  • ISSN:51-1258/R
  • 分类号:64-68
摘要
卵母细胞在低温保护剂的加载和去除过程中,会受到渗透损伤和毒性损伤,采用微流控技术可实现保护剂浓度连续变化,减小细胞损伤。本文设计了用于低温保护剂加载及去除的5种不同参数的Y型微流控芯片,测定了在不同入口流速、芯片入口角度、通道深宽比及转弯半径下,微通道内保护剂溶液和缓冲溶液的混合程度。实验结果表明:随着溶液入口流速的减小、通道深宽比的增大及转弯半径的减小,溶液在微通道内混合长度减小,混合速度加快,而微通道入口角度对流体混合影响很小。但实际芯片的操作条件及结构参数应根据低温保护剂加载和去除时需要达到的效果以及芯片加工工艺等因素确定。本文研究结果可为其他用于低温保护剂混合的微流控芯片的设计提供参考。
        Microfluidic chips can be used to realize continuous cryoprotectants(CPA)loading/unloading for oocytes,reducing osmotic damage and chemical toxicity of CPA.In this study,five different Y-shape microfluidic chips were fabricated to realize the continuous CPA loading/unloading.The effects of flow rate,entrance angle,aspect ratio and turning radius of microchannels on the mixing efficiency of microfluidic chips were analyzed quantitatively.The experimental results showed that with the decrease of flow rates,the increase of aspect ratios and the decrease of turning raradius of microchannel,the mixing length decreased and the mixing velocity was promoted,while the entrance angle had little effect on the mixing efficiency.However,the operating conditions and structural parameters of the chips in practical application should be determined based on an overall consideration of CPA loading/unloading time and machining accuracy.These results would provide a reference to the application of microfluidic chip in CPA mixing.
引文
[1]WHITTINGHAM D G.Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at-196degrees C[J].J Reprod Fertil,1977,49(1):89-94.
    [2]CHEN C.Pregnancy after human oocyte cryopreservation[J].Lancet,1986,1(8486):884-886.
    [3]EDGAR D H,GOOK D A.A critical appraisal of cryopreservation(slow cooling versus vitrification)of human oocytes and embryos[J].Hum Reprod Update,2012,18(5):536-554.
    [4]潘永苗,钱羽力,徐向荣,等.两种冷冻方法对人类卵巢组织卵泡形态和组织增殖活性的影响[J].生殖与避孕,2013,33(5):300-305,316.
    [5]CLARK N A,SWAIN J E.Oocyte cryopreservation:searching for novel improvement strategies[J].J Assist Reprod Genet,2013,30(7):865-875.
    [6]CHEN H H,SHEN Hong,HEIMFELD S,et al.A microfluidic study of mouse dendritic cell membrane transport properties of water and cryoprotectants[J].Int J Heat Mass Transf,2008,51(23/24):5687-5694.
    [7]KOBEL S,VALERO A,LATT J,et al.Optimization of microfluidic single cell trapping for long-term on-chip culture[J].Lab Chip,2010,10(7):857-863.
    [8]LECAULT V,WHITE A K,SINGHAL A,et al.Microfluidic single cell analysis:from promise to practice[J].Curr Opin Chem Biol,2012,16(3/4):381-390.
    [9]MATA C,LONGMIRE E K,MCKENNA D H,et al.Experimental study of diffusion-based extraction from a cell suspension[J].Microfluid Nanofluidics,2008,5(4):529-540.
    [10]MATA C,LONGMIRE E,MCKENNA D,et al.Cell motion and recovery in a two-stream microfluidic device[J].Microfluid Nanofluidics,2010,8(4):457-465.
    [11]HANNA J,HUBEL A,LEMKE E.Diffusion-based extraction of DMSO from a cell suspension in a three stream,vertical microchannel[J].Biotechnol Bioeng,2012,109(9):2316-2324.
    [12]SONG Y S,MOON S,HULLI L,et al.Microfluidics for cryopreservation[J].Lab Chip,2009,9(13):1874-1881.
    [13]HEO Y S,LEE H J,HASSELL B A,et al.Controlled loading of cryoprotectants(CPAs)to oocyte with linear and complex CPA profiles on a microfluidic platform[J].Lab Chip,2011,11(20):3530-3537.
    [14]HUBEL A.Advancing the preservation of cellular therapy products[J].Transfusion,2011,51(Suppl 4):82S-86S.
    [15]FLEMING K K,LONGMIRE E K,HUBEL A.Numerical characterization of diffusion-based extraction in cell-laden flow through a microfluidic channel[J].J Biomech Eng,2007,129(5):703-711.
    [16]李勇,王欣欣,王瑞金.影响微流体混合的因素及微混合器[J].新技术新工艺,2008(7):40-45.
    [17]杨云,周新丽,周楠峰,等.用于卵母细胞保护剂添加过程的微混合器优化模拟[J].浙江农业学报,2015,27(3):460-466.
    [18]LIU R H,STREMLER M A,SHARP K V,et al.Passive mixing in a three-dimensional serpentine microchannel[J].Journal of Microelectromechanical Systems,2000,9(2):190-197.
    [19]LEE Y K,TABELING P,SHIH C,et al.Characterization of a MEMS-fabricated mixing device[J].Microelectromechanical Systems(MEMS),2000:505-511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700