非均匀SiO_2-H_2O纳米流体辐射特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical Study on Radiation Characteristics of Heterogeneous SiO_2-H_2O Nanofluids
  • 作者:刘立君 ; 张一帆 ; 马川 ; 刘晓燕
  • 英文作者:LIU Lijun;ZHANG Yifan;MA Chuan;LIU Xiaoyan;School of Civil Engineering,Northeast Petroleum University;
  • 关键词:纳米流体 ; 梯度折射率 ; 辐射传递方程 ; 间断有限元法
  • 英文关键词:nanofluids;;gradient refractive index;;radiative transfer equation;;discontinuous finite element method
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:东北石油大学土木建筑工程学院;
  • 出版日期:2019-04-25
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(51534004)~~
  • 语种:中文;
  • 页:CLDB201908004
  • 页数:4
  • CN:08
  • ISSN:50-1078/TB
  • 分类号:21-24
摘要
建立具有梯度折射率的SiO_2-H_2O纳米流体辐射传递模型,利用间断有限元法求解其在持续脉冲辐射下的透射率、反射率。通过与均匀纳米流体的透射率、反射率进行对比,分析非均匀纳米流体对辐射吸收效果的影响。同时考虑非均匀条件下折射率梯度、SiO_2质量分数以及颗粒粒径对纳米流体的反射率及透射率的影响。结果表明:当纳米流体具有梯度折射率时,反射率及透射率均减小,吸收率从30%提高到了41. 9%;而折射率梯度的增大使得反射率及透射率进一步减小; SiO_2质量分数和颗粒粒径的增大则导致反射率增大,透射率减小。
        In this article,a gradient refractive index radiation transfer model of SiO_2-H_2O nanofluids was established,the transmittance and reflectivity of the nanofluids against the background of continuous impulse radiation were obtained through the discontinuous finite element method. The absorption effect of heterogeneous nanofluids was studied by comparing with the transmittance and reflectivity of homogeneous nanofluids. At the same time,the effects of the refractive index gradient,mass fraction and particle size on the reflectance and transmittance of nanofluids were also analyzed. The results show that the reflectivity and transmittance will decrease for the nanofluids which have gradient index,and the absorptivity will be increased from 30% to 41. 9%; the increase of the refractive index gradient will make the reflectivity and transmittance reduce further; the increase of mass fraction and particle size will bring about the increase of reflectivity and the decrease of transmittance.
引文
1 Li J,Feng Y H,Zhang X X,et al.Chinese Journal of Engineering,2015,37(8),1063(in Chinese).李静,冯妍卉,张欣欣,等.工程科学学报,2015,37(8),1063.
    2 Zhu X,Chen W,Li L X.Chemical Industry and Engineering Progress,2016,35(8),2381(in Chinese).祝啸,陈威,李林星.化工进展,2016,35(8),2381.
    3 Zheng Z Z,He Q B.Journal of Vacuum Science&Technology,2015,35(1),84(in Chinese).郑兆志,何钦波.真空科学与技术学报,2015,35(1),84.
    4 Choi S U S.Asme Fed,1995,231(1),99.
    5 Zhang J Y,Liu S,Sun W N,et al.Materials Review,2016,30(s2),160(in Chinese).张景胤,刘石,孙伟娜,等.材料导报,2016,30(专辑28),160.
    6 Wang Y,Duan G B,Liu Z M.Materials Review A:Review Papers,2014,28(10),62(in Chinese).王勇,段广彬,刘宗明.材料导报:综述篇,2014,28(10),62.
    7 Mao L B,Zhang R Y,Ke X F,et al.Acta Energiae Solaris Sinica,2009,30(12),1647(in Chinese).毛凌波,张仁元,柯秀芳,等.太阳能学报,2009,30(12),1647.
    8 Zhu Q Z,Wu M Y,Chen H,et al.Journal of Thermal Science&Technology,2015,14(1),52(in Chinese).朱群志,武明岩,陈慧,等.热科学与技术,2015,14(1),52.
    9 Chen F,Dai Y C,Ye X J,et al.Energy Conservation,2016,35(6),40(in Chinese).陈飞,戴雨辰,叶晓江,等.节能,2016,35(6),40.
    10 Xu G Y,Chen W,Zhang X S,et al.Journal of Engineering Thermophysics,2015,36(5),960(in Chinese).徐国英,陈伟,张小松,等.工程热物理学报,2015,36(5),960.
    11 Shende R C,Ramaprabhu S.Solar Energy Materials&Solar Cells,2016,157,117.
    12 Xu G Y,Chen C,Zhang X S,et al.Journal of Southeast University(Natural Science Edition),2016,46(6),1221(in Chinese).徐国英,陈彩,张小松,等.东南大学学报(自然科学版),2016,46(6),1221.
    13 Otanicar T P,Phelan P E,Prasher R S,et al.Journal of Renewable&Sustainable Energy,2010,2(3),033102.
    14 Wang L H,Xiang J,Li J X.Materials Review,2011,25(s1),17(in Chinese).王良虎,向军,李菊香.材料导报,2011,25(专辑17),17.
    15 Van D H.Light scattering by small particals,Willey,America,1981.
    16 Kerker M.The scattering of light,Academic Press,America,1969.
    17 Liu L H,Tan H P.Numerical simulation of heat radiation transfer in graded index medium,Science Press,China,2006(in Chinese).刘林华,谈和平.梯度折射率介质内热辐射传递的数值模拟,科学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700