涡流管膨胀的二氧化碳跨临界制冷循环性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Performance of Carbon Dioxide Trans-critical Refrigeration Cycle with Vortex Tube Expansion
  • 作者:刘业凤 ; 孙影 ; 张华 ; 唐丹萍 ; 钟文轩 ; 王东亮
  • 英文作者:LIU Yefeng;SUN Ying;ZHANG Hua;TANG Danping;ZHONG Wenxuan;WANG Dongliang;School of Energy and Power Engineering Institute, University of Shanghai for Science and Technology;
  • 关键词:二氧化碳 ; 跨临界制冷循环 ; 涡流管 ; 性能系数
  • 英文关键词:Carbon dioxide;;Trans-critical refrigeration cycle;;Vortex tube;;Coefficient of performance(COP)
  • 中文刊名:ZLJS
  • 英文刊名:Chinese Journal of Refrigeration Technology
  • 机构:上海理工大学能源与动力工程学院;
  • 出版日期:2019-02-15
  • 出版单位:制冷技术
  • 年:2019
  • 期:v.39;No.166
  • 基金:上海市浦江人才计划(No.17PJ1407200);; 上海市技术性贸易措施应对专项项目(No.16TBT012)
  • 语种:中文;
  • 页:ZLJS201901003
  • 页数:5
  • CN:01
  • ISSN:31-1492/TB
  • 分类号:15-19
摘要
本文提出在二氧化碳跨临界制冷循环中,采用涡流管膨胀代替常规的膨胀阀节流,以减少系统的不可逆损失,提高系统性能系数(COP)。本文介绍了涡流管膨胀的二氧化碳跨临界制冷循环的工作原理,分析了系统特点,进行了热力学计算,并与常规的膨胀阀节流系统进行了性能对比分析。研究结果表明:气体冷却器出口温度和排气压力对涡流管系统COP的提高具有显著影响。气冷器出口温度越高、排气压力越低,涡流管系统的COP增加得越显著,可增加30%左右;提高涡流管等熵效率和冷质量分数也可使涡流管系统COP增加10%左右。
        In this paper, a vortex tube is used to replace the conventional throttle valve in the carbon dioxide trans-critical refrigeration cycle system to reduce the irreversible loss and to improve the coefficient of performance(COP). The working principle of the vortex tube system is introduced, and its features are analyzed.The performance of the system and the traditional system with a throttle valve are calculated and compared. The results show that the outlet temperatures of gas cooler and discharge pressure are main influence factors. The higher the outlet temperatures of gas cooler and the lower the discharge pressures are, the higher the proposed system COP is, and the COP increased by about 30%. The increase of isentropic efficiency of vortex tube and the cooling mass fraction can increase COP by about 10%.
引文
[1]丁国良,黄冬平.二氧化碳制冷技术[M].北京:化学工业出版社,2007.
    [2]ROBINSON D M,GROLL E A.Efficiencies of trans-critical CO2 cycles with and without an expansion turbine:Rendement de cycles trans-critiques au CO2avec et sans turbine d'expansion[J].International Journal of Refrigeration,1998,21(7):577-589.
    [3]LI D,BAEK J S,GROLL E A,et al.Thermodynamic analysis of vortex tube and work output expansion devices for the trans-critical carbon dioxide cycle[C].Fourth IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue,Purdue University,USA,2000:433-440.
    [4]和永超,侯予,赵红利,等.三种膨胀装置不可逆损失的比较[J].低温与超导,2005,33(2):53-57.
    [5]马娟丽,刘昌海,侯予.采用不同膨胀机构的跨临界CO2循环性能分析[J].低温工程,2012(1):33-39.
    [6]吴孔祥.涡流管与制冷剂耦合特性的实验研究与数值模拟[D].杭州:浙江大学,2013.
    [7]查世彤,马一太.CO2跨临界循环中膨胀过程的对比与分析[J].工程热物理学报,2003,24(4):546-549.
    [8]HAN X,LI N,WU K,et al.The influence of working gas characteristics on energy separation of vortex tube[J].Applied Thermal Engineering,2013,61(2):171-177.
    [9]MANIMARAN R,LUND H,KAISER M J.Computational analysis of energy separation in a counter-flow vortex tube based on inlet shape and aspect ratio[J].Energy,2016,107:17-28.
    [10]黄钟岳,胡洪涛.提高涡流管制冷效率研究[J].制冷技术,2002,22(1):18-20.
    [11]龚毅,侯峰,梁志礼,等.跨临界CO2循环制冷系统的实验研究[J].制冷技术,2012,32(1):21-25.
    [12]周少伟.涡流管能量分离效应的理论与试验研究[D].哈尔滨:哈尔滨工程大学,2007.
    [13]邓帅,王如竹,代彦军.二氧化碳跨临界制冷循环过冷却过程热力学分析[J].制冷技术,2013,33(3):1-6.
    [14]SHAMSODDINI R,KHORASANI A F.A new approach to study and optimize cooling performance of a Ranque-Hilsch vortex tube[J].International Journal of Refrigeration,2012,35(8):2339-2348.
    [15]KANDIL H A,ABDELGHANY S T.Computational investigation of different effects on the performance of the Ranque-Hilsch vortex tube[J].Energy,2015,84(4):207-218.
    [16]申江,边煜竣,郭欣炜.涡流管性能实验研究及优化[J].低温与超导,2017,45(3):62-65,70.
    [17]靳海明,计光华.汽液两相涡流管试验台的研制[J].低温工程,1994(3):19-22.
    [18]刘迎福.CO2跨临界制冷循环的实验研究与性能优化[D].北京:华北电力大学,2011.
    [19]DUBEY A M,AGRAWAL G D,KUMAR S.Performance evaluation and optimal configuration analysis of a trans-critical carbon dioxide propylene cascade system with vortex tube expander in high-temperature cycle[J].Clean Technologies and Environmental Policy,2016,18(1):105-122.
    [20]杨坤仑.涡流管冷热气流分流原理及其应用[J].制冷技术,1989,9(1):10-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700