相对论强激光与近临界密度等离子体相互作用的质子成像
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Proton imaging of relativistic laser-produced near-critical-density plasma
  • 作者:李曜均 ; 岳东宁 ; 邓彦卿 ; 赵旭 ; 魏文青 ; 葛绪雷 ; 远晓辉 ; 刘峰 ; 陈黎明
  • 英文作者:Li Yao-Jun;Yue Dong-Ning;Deng Yan-Qing;Zhao Xu;Wei Wen-Qing;Ge Xu-Lei;Yuan Xiao-Hui;Liu Feng;Chen Li-Ming;Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy,Shanghai Jiao Tong University;IFSA Collaborative Innovation Center, Shanghai Jiao Tong University;Institute of Physics, Chinese Academy of Sciences;
  • 关键词:相对论强激光 ; 近临界密度 ; 等离子体 ; 质子成像
  • 英文关键词:ultra-intense laser;;near-critical-density;;plasma;;proton radiography
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:上海交通大学物理与天文学院激光等离子体教育部重点实验室;上海交通大学IFSA协同创新中心;中国科学院物理研究所;
  • 出版日期:2019-08-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:中国科学院A类战略性先导科技专项(批准号:XDA17040504)资助的课题~~
  • 语种:中文;
  • 页:WLXB201915025
  • 页数:8
  • CN:15
  • ISSN:11-1958/O4
  • 分类号:269-276
摘要
近临界密度是激光等离子体相互作用中能量吸收和高能电子产生的重要等离子体参数区间.利用激光加速产生的质子束作为电磁场探针,研究了超强激光与近临界密度等离子体相互作用产生的等离子体结构及其时间演化.实验发现,初始均匀分布的质子束穿过近临界密度等离子体后分裂为两个斑.两个质子束斑的间距随着作用时间先增大后减小.并且两个束斑呈不对称分布.分析认为,幅度约为10~9 V/m的不对称分布瞬变电场是产生质子束偏折和分裂的主要原因.粒子模拟的结果也验证了这一解释.该研究对激光尾场电子加速、离子加速、惯性约束聚变快点火方案研究等有一定的参考价值.
        When ultrashort pulse laser interacts with near-critical-density plasma, extremely strong transient electromagnetic field will generate a great variety of nonlinear phenomena, such as efficient pulse absorption,magnetic self-channeling, nonlinear coherent structure, and electron and ion acceleration. It is of great significance to make a profound study of these physical processes for studying the laser-plasma interaction. Here in this work, we investigate the near-critical-density plasma structure and its temporal evolution by using proton radiography. The plasma is generated by the interaction of ultra-intense femtosecond laser(I ~3.6 ×10~(18) W/cm~2) with high-density gas-jet target, which can produce plasma with electron density n_e~ 0.7 nc(here,nc is the near-critical-density) for 800 nm laser. The proton beam is produced by the interaction of another ultra-intense femtosecond laser with stainless steel foil target. In the experiment, the proton beam is split into two asymmetric spots. On the one hand, the distance between two spots first increases rapidly and decreases slowly as time goes by. On the other hand, the size of proton beam spot on the right side is obviously lager than the one on the left side. The modification of proton beam profile indicates that a transient electric field with a maximum amplitude of 10~9 V/m is produced when ultrashort laser pulse interacts with the plasma. Besides, the electric field in the direction of laser propagation axis is stronger than that in the opposite direction. When the proton beam goes through the laser-plasma interaction area, most of the protons enter into the electric field in the direction of laser propagation axis, only a small number of protons enter into the electric field in the opposite direction, resulting in the fact that the proton beam is split into two asymmetric spots. The spacecharge field in the plasma is induced by the laser ponderomotive force which expels the electrons piled up into a step-like profile. This field can be sustained for a long time, as the ions expand slowly because of the coulomb repulsion between ions, and the hot electrons continue to move forward with energy of a few MeV. At the end,these expanded ions gradually recombine with the reflowed electrons, causing the space-charge field to weaken until it disappears eventually. As a result, the deflection of the proton beam by the electric field in the plasma is also weakened, so the distance between proton beam splitting spots is correspondingly reduced. The hypothesis is justified by the particle-in-cell simulations. The results may have important implications in laser wake-field electron acceleration, ion acceleration and fast ignition scheme to inertial confinement fusion.
引文
[1]Wilks S C,Kruer W,Tabak M,Langdon A 1992 Phys.Rev.Lett.69 1383
    [2]Pukhov A,Meyer-ter-Vehn J 1996 Phys.Rev.Lett.76 3975
    [3]Bulanov S V,Lontano M,Esirkepov T,Pegoraro F,Pukhov A 1996 Phys.Rev.Lett.76 3562
    [4]Bulanov S V,Esirkepov T,Naumova N,Pegoraro F,Vshivkov V 1999 Phys.Rev.Lett.82 3440
    [5]Esirkepov T,Nishihara K,Bulanov S,Pegoraro F 2002 Phys.Rev.Lett.89 275002
    [6]Mori W B,Joshi C,Dawson J,Forslund D,Kindel J 1988Phys.Rev.Lett.60 1298
    [7]Li G,Yan R,Ren C,Wang T L,Tonge J,Mori W 2008Phys.Rev.Lett.100 125002
    [8]Nakamura T,Mima K 2008 Phys.Rev.Lett.100 205006
    [9]Shaw J L,Lemos N,Amorim L D,Vafaeinajafabadi N,Marsh K A,Tsung F S 2017 Phys.Rev.Lett.118 064801
    [10]Wang J,Cai D F,Zhao Z Q,Gu Y Q 2017 Acta Phys.Sin.66 075203(in Chinese)[王剑,蔡达锋,赵宗清,谷渝秋2017物理学报66 075203]
    [11]Nakamura T,Bulanov S,Esirkepov T,Kando M 2010 Phys.Rev.Lett.105 135002
    [12]Bulanov S V,Esirkepov T Z,Khoroshkov V S,Kunetsov AV,Pegoraro F 2002 Phys.Lett.A 299 240
    [13]Shi S M,Chen R C,Xue Y L,Ren Y Q,Du G H,Deng B,Xie H L,Xiao T Q 2008 Acta Phys.Sin.57 6319(in Chinese)[师绍猛,陈荣昌,薛艳玲,任玉琦,杜国浩,邓彪,谢红兰,肖体乔2008物理学报57 6319]
    [14]Borghesi M,Schiavi A,Campbell D H,Haines M G,Willi O,MacKinnon A J,Gizzi L A,Galimberti M,Clarke R J,Ruhl H 2001 Plasma Phys.Controlled Fusion 43 A267
    [15]Borghesi M,Sarri G,Cecchetti C A,Kourakis I,Hoarty D,Stevenson R M,James S,Brown C D,Hobbs P,Lockyear J,Morton J,Willi O,Jung R,Dieckmann M E 2010 Laser Part.Beams 28 277
    [16]Borghesi M,MacKinnon A,Barringer L,Gaillard R,Gizzi L,Meyer C,Willi O,Pukhov A,Meyer-ter-Vehn J 1997 Phys.Rev.Lett.78 879
    [17]Yogo A,Daido H,Bulanov S V,Nemoto K,Oishi Y,Nayuki T,Fujii T,Ogura K,Orimo S,Sagisaka A,Ma J L,Esirkepov T Zh,Mori M,Nishiuchi M,Pirozhkov A S,Nakamura S,Noda A,Nagatomo H,Kimura T,Tajima T 2008 Phys.Rev.E 77 016401
    [18]Willingale L,Nagel S R,Thomas A G,Bellei C,Clarke R J,Dangor A E,Heathcote R,Kaluza M C,Kamperidis C,Kneip S,Krushelnick K,Lopes N,Mangles S P,Nazarov W,Nilson P M,Najmudin Z 2009 Phys.Rev.Lett.102 125002
    [19]Okihara S,Esirkepov T Zh,Nagai K,Shimizu S,Sato F,Hashida M,Iida T,Nishihara K,Norimatsu T,Izawa Y,Sakabe S 2004 Phys.Rev.E 69 026401
    [20]Palmer C A,Dover N P,Pogorelsky I,Babzien M,Dudnikova G I,Ispiriyan M,Polyanskiy M N,Schreiber J,Shkolnikov P,Yakimenko V,Najmudin Z 2011 Phys.Rev.Lett.106 014801
    [21]Haberberger D,Tochitsky S,Fiuza F,Gong C,Fonseca R A,Silva L O,Mori W B,Joshi C 2012 Nat.Phys.8 95
    [22]Sylla F,Flacco A,Kahaly S,Veltcheva M,Lifschitz A,Malka V,d'Humières E,Andriyash I,Tikhonchuk V 2013 Phys.Rev.Lett.110 085001
    [23]Chen S N,Vranic M,Gangolf T,Boella E,Antici P,BaillyGrandvaux M,Loiseau P,Pepin H,Revet G,Santos J J,Schroer A M,Starodubtsev M,Willi O,Silva L O,d'Humieres E,Fuchs J 2017 Sci.Rep.7 13505
    [24]Mackinnon A J,Patel P K,Town R P,Edwards M J,Phillips T,Lerner S C,Price D W,Hicks D,Key M H,Hatchett S2004 Rev.Sci.Instrum.75 3531
    [25]Romagnani L,Borghesi M,Cecchetti C A,Kar S,Antici P,Audebert P,Bandhoupadjay S,Ceccherini F,Cowan T,Fuchs J 2008 Laser Part.Beams 26 241
    [26]Romagnani L,Bulanov S V,Borghesi M,Audebert P,Gauthier J C,L?wenbruck K,Mackinnon A J,Patel P,Pretzler G,Toncian T,Willi O 2008 Phys.Rev.Lett.101025004
    [27]Li C K,Séguin F H,Frenje J A,Manuel M,Casey D,Sinenian N,Petrasso R D,Amendt P A,Landen O L,Rygg JR,Town R P J,Betti R,Delettrez J,Knauer J P,Marshall F,Meyerhofer D D,Sangster T C,Shvarts D,Smalyuk V A,Soures J M,Back C A,Kilkenny J D,Nikroo A 2009 Phys.Plasmas 16 056304
    [28]Borghesi M,Mackinnon A J,Gaillard R,Willi O,Pukhov A,Meyer-ter-Vehn J 1998 Phys.Rev.Lett.80 5137
    [29]Smyth A G,Sarri G,Vranic M,Amano Y,Doria D,Guillaume E,Habara H,Heathcote R,Hicks G,Najmudin Z,Nakamura H,Norreys P A,Kar S,Silva L O,Tanaka K A,Vieira J,Borghesi M 2016 Phys.Plasmas 23 063121
    [30]Li C K,Seguin F H,Frenje J A,Rygg J R,Petrasso R D,Town R P,Amendt P A,Hatchett S P,Landen O L,Mackinnon A J,Patel P K,Smalyuk V A,Sangster T C,Knauer J P 2006 Phys.Rev.Lett.97 135003
    [31]Li G,Li S,Ain Q,Gao K,Mirzaie M,Hafz N A M 2019Phys.Plasmas 26 022306
    [32]Fonseca R A,Silva L O,Tsung F S,Decyk V K,Lu W,Ren C 2002 Lect.Notes Comput.Sci.2331 342

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700