西准噶尔库什库都克石英闪长岩地球化学、年代学及地质意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:LA-ICP-MS Zircon U-Pb Geochronology and Geochemistry of the Kushenkuduke Quartz Diorite in Western Junggar and Its Tectonic Significance
  • 作者:乔耿彪 ; 赵寒森 ; 陈隽璐 ; 白建科 ; 彭素霞 ; 樊金生
  • 英文作者:QIAO Gengbiao;ZHAO Hansen;CHEN Junlu;BAI Jianke;PENG Suxia;FAN Jinsheng;Xi'an Center of Geological Survey,CGS, Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits,MLR;Geophysical and Geochemical Exploration Corporation, Northwest Bureau of Geological Exploration for Nonferrous Metals;
  • 关键词:石英闪长岩 ; 地球化学 ; 晚石炭世 ; 库什库都克 ; 西准噶尔
  • 英文关键词:quartz diorite;;geochemistry;;Late Carboniferous;;Kushenkuduke;;Western Junggar
  • 中文刊名:GXDX
  • 英文刊名:Geological Journal of China Universities
  • 机构:中国地质调查局西安地质调查中心国土资源部岩浆作用成矿与找矿重点实验室;西安西北有色物化探总队有限公司;
  • 出版日期:2018-04-20
  • 出版单位:高校地质学报
  • 年:2018
  • 期:v.24;No.92
  • 基金:国家自然科学基金项目(41302051);; 中国地质调查局项目(DD20160006);; 陕西省科学技术研究发展计划项目(2014JM2-4037)联合资助
  • 语种:中文;
  • 页:GXDX201802001
  • 页数:13
  • CN:02
  • ISSN:32-1440/P
  • 分类号:3-15
摘要
库什库都克石英闪长岩位于新疆西准噶尔的达尔布特晚古生代中酸性岩浆岩带中。通过LA-ICP-MS锆石U-Pb定年,结合锆石阴极发光图像和U、Th元素特征,获得石英闪长岩的年龄为305.3±2.8 Ma(n=19,MSWD=0.17),时代属晚石炭世晚期(C2)。石英闪长岩呈半自形不等粒结构,块状构造,矿物成分主要为斜长石、石英、角闪石和黑云母等,局部发育含柱状辉石的石英辉长闪长岩。岩石的Si O2含量为59.38%~63.37%,全碱变化于6.55%~7.51%;里特曼指数(σ)变化于2.62~2.88,铝饱和指数(A/CNK值)介于0.83~0.90,为准铝质;岩石轻稀土富集且轻重稀土元素分馏明显,(La/Yb)N为2.99~3.66,负Eu异常(δEu为0.64~0.79);岩石相对富集Ba、Nd、Zr、K和LREE等元素,而相对亏损Rb、Nb、Th、Sr、P、Ti和HREE等元素,属高钾钙碱性准铝质I型花岗岩类岩石。石英闪长岩地球化学特征表明其为上地壳变质玄武岩熔融的产物,在岩浆演化过程中发生了以斜长石、辉石、金红石和磷灰石为主的分离结晶作用,而角闪石基本未发生分离结晶。区域构造环境演化分析认为西准噶尔不仅在晚石炭世早期存在与俯冲作用相关的岛弧花岗岩,在晚石炭世晚期早二叠世早期也存在持续俯冲作用,在此环境下形成了与俯冲作用相关的岛弧型库什库都克石英闪长岩。
        The Kushenkuduke quartz diorite is located in the Late Paleozoic intermediate-acidic magmatic rocks belt along Dalbute area in Western Junggar, Xinjiang. LA-ICP-MS zircon U-Pb dating yields an age of 305.3±2.8 Ma(n=19, MSWD= 0.17) for the quartz diorite, indicating that it was generated during late stage of the Late Carboniferous(C_2). The quartz diorite has a hypidiomorphic heterogranular texture and a massive structure, and consists mainly of plagioclase, quartz, amphibole, and biotite, etc. A small amount of quartz gabbro diorite with columnar pyroxene has also been observed in this pluton. The geochemical analyses show that the pluton is characterized by SiO_2 of 59.38%~63.37%, total alkali(Na_2O+K_2O) of 6.55%~7.51%, and Rittman index σ of 2.62~2.88, aluminum index A/CNK of 0.83~0.90, indicating a metaluminous composition. The quartz diorite is enriched in LREE, depleted in HREE( LREE/HREE=3.86~4.38,(La/Yb)N=2.99~3.66), with negative Eu anomalies(δEu=0.64~0.79). The trace elements are characterized by Ba,Nd, Zr, K, LREE enrichment, and Rb, Nb, Th, Sr, P, Ti, HREE depletion. All the features suggest a high K calcic-alkaline I-type granite. The quartz diorite was likely derived from metabasalt in the upper crust, and subsequently underwent the fractional crystallization of plagioclase, pyroxene, rutile, and apatite without amphibole. Based on comprehensive analysis of the genetic type of the quartz diorite and evolution of regional tectonic environment, we suggest that when the Junggar Ocean perpetually continued its deep subduction toward north from the early Late Carboniferous to the Early Permian, and the Kushenkuduke quartz diorite of the island-arc type was formed during this tectonic evolution.
引文
董连慧,朱志新,屈迅,等.2010.新疆蛇绿岩带的分布、特征及研究新进展[J].岩石学报,26(10):2894-2904.
    段丰浩,支倩,李永军,等.2017a.新疆西准噶尔库什库都克岩体地质时代、地球化学及岩石成因[J].地质科学,52(2):506-525.
    段丰浩,李永军,陈荣光,等.2017b.新疆西准噶尔库尔尕克希岩体年代学、地球化学特征及岩石成因[J].岩石矿物学杂志,36(3):295-311.
    冯乾文,李锦轶,刘建峰,等.2012.新疆西准噶尔红山岩体及其中闪长质岩墙的时代-来自锆石LA-ICP-MS定年的证据[J].岩石学报,28(9):2935-2949.
    冯益民.1987.西准噶尔古板块构造特征[J].中国地质科学院西安地质矿产研究所所刊,18(4):141-160.
    高睿,肖龙,王国灿,等.2013.西准噶尔晚古生代岩浆活动和构造背景[J].岩石学报,29(10):3413-3434.
    高山林,何治亮,周祖翼.2006.西准噶尔克拉玛依花岗岩体地球化学特征及其意义[J].新疆地质,24(2):125-130.
    韩宝福,季建清,宋彪,等.2006.新疆准噶尔晚古生代陆壳垂向生长(I)-后碰撞深成岩浆活动的时限[J].岩石学报,22(5):1077-1086.
    韩宝福.2007.后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J].地学前缘,14(3):64-72.
    何国琦.2004.中国新疆及邻区大地构造图说明书1:2500000[M].北京市:地质出版社,65.
    贺敬博,陈斌.2011.西准噶尔克拉玛依岩体的成因:年代学、岩石学和地球化学证据[J].地学前缘,18(2):191-211.
    金成伟,张秀棋.1993.新疆西准噶尔花岗岩类的时代及其成因[J].地质科学,28(1):28-36.
    金成伟,徐永生.1997.新疆托里别鲁阿嘎希地区花岗岩类的岩石学和成因[J].岩石学报,13(4):529-537.
    李锦轶,何国琦,徐新,等.2006.新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J].地质学报,80(1):148-168.
    李锦轶,张进,杨天南,等.2009.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报(地球科学版),39(4):584-605.
    李永军,王冉,李卫东,等.2012.西准噶尔达尔布特南构造-岩浆岩带斑岩型铜-钼矿新发现及找矿思路[J].岩石学报,28(7):2009-2014.
    李永军,李甘雨,康磊,等.2013.西准噶尔夏尔莆岩体岩浆混合的锆石U-Pb年代学证据[J].岩石学报,29(9):3023-3030.
    刘玉琳,郭丽爽,宋会侠,等.2009.新疆西准噶尔包古图斑岩铜矿年代学研究[J].中国科学(D辑):地球科学,52(10):1543-1549.
    邱检生,肖娥,胡建,等.2008.福建北东沿海高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd Hf同位素制约[J].岩石学报,24(11):2468-2684.
    宋会侠,刘玉琳,屈文俊,等.2007.新疆包古图斑岩铜矿矿床地质特征[J].岩石学报,23(8):1981-1988.
    申萍,沈远超.2010.西准噶尔与环巴尔喀什斑岩型铜矿床成矿条件及成矿模式对比研究[J].岩石学报,26(8):2299-2316.
    苏玉平,唐红峰,侯广顺,等.2006.新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究[J].地球化学,35(1):55-67.
    唐功建,王强,赵振华,等.2009.西准噶尔包古图成矿斑岩年代学与地球化学:岩石成因与构造、铜金成矿意义[J].地球科学,34(1):56-74.
    王京彬,徐新.2006.新疆北部后碰撞构造演化与成矿[J].地质学报,80(1):23-31.
    魏少妮,朱永峰.2015.新疆西准噶尔包古图地区中酸性侵入体的岩石学、年代学和地球化学研究[J].岩石学报,31(1):143-160.
    吴福元,李献华,杨进辉,等.2007.花岗岩成因研究的若干问题[J].岩石学报,23(6):1217-1238.
    伍建机,陈斌.2004.西准噶尔庙尔沟后碰撞花岗岩微量元素和Nd-Sr同位素特征及成因[J].新疆地质,22(1):29-35.
    肖文交,韩春明,袁超,等.2006.新疆北部石炭纪-二叠纪独特的构造-成矿作用:对古亚洲洋构造域南部大地构造演化的制约[J].岩石学报,22(5):1062-1076.
    向坤鹏,李永军,李钊,等.2015.新疆西准噶尔哈拉阿拉特山火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及意义[J].地质学报,89(5):843-855.
    徐学义,李荣社,陈隽璐,等.2014.新疆北部古生代构造演化的几点认识[J].岩石学报,30(6):1521-1534.
    杨钢,肖龙,王国灿,等.2015.西准噶尔别鲁阿嘎希花岗闪长岩年代学、地球化学特征及岩石成因[J].地球科学,40(5):810-823.
    尹继元,陈文,喻顺,等.2013.西准噶尔包古图富镁闪长质岩墙的时代、地球化学特征以及铜金成矿意义[J].中国地质,40(4):1030-1043.
    张连昌,万博,焦学军,等.2006.西准包古图含铜斑岩的埃达克岩特征及其地质意义[J].中国地质,33(3):626-631.
    张旗,冉皞,李承东.2012.A型花岗岩的实质是什么[J].岩石矿物学杂志,31(4):621-626.
    周刚,张招崇,吴淦国,等.2009.新疆准噶尔北东缘造山后伸展及陆壳生长:来自哈旦逊杂岩体的岩石学及地球化学的证据[J].地质学报,83(3):331-346.
    Alther R,Holl A,Hegner E,et al.2000.High-potassium,calc-alkaline I-type plutonism in the European Variscides:Northern Vosges(France)and northern Schwarzwald(Germany)[J].Lithos,50:51-73.
    Brown G C,Thorpe R S and Webb P C.1984.The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources[J].Journal of the Geological Society,141(3):413-426.
    Chappell B W.1999.Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J].Lithos,46:535-551.
    Choulet F,Chen Y,CognéJ P,et al.2013.First Triassic palaeomagnetic constraints from Junggar(NW China)and their implications for the Mesozoic tectonics in Central Asia[J].Journal of Asian Earth Sciences,78:371-394.
    Defant M J and Drummond M S.1990.Derivation of some morden arc magmas by of young subducted lithosphere[J].Nature,347:662-665.
    Feng Y,Coleman R G,Tilton G,et al.1989.Tectonic evolution of the West Junggar Region,Xinjiang,China[J].Tectonics,8(4):729-752.
    Gao R,Xiao L,Pirajno F,et al.2014.Carboniferous-Permian extensive magmatism in the West Junggar,Xinjiang,northwestern China:Its geochemistry,geochronology,and petrogenesis[J].Lithos,204:125-143.
    Geng H Y,Sun M,Yuan C,et al.2009.Geochemical,Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar,Xinjiang:Implications for ridge subduction?[J]Chemical Geology,266(3-4):364-389.
    Gao S,Luo T C,Zhang B R,et al.1998.Chemical composition of the continental crust as revealed by studies in East China[J].Geochimica et Cosmochimica Acta,62(11):1959-1975.
    Harris N B W and Inger S.1992.Trace element modelling of pelite-derived granites[J].Contributions to Mineralogy and Petrology,110:46-56.
    Hanchar J M and Westrenen W V.2007.Rare earth element behavior in zircon-melt systems[J].Elements,3(1):37.
    Hu Z C,Zhang W,Liu Y S,et al.2015.“Wave”signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis:application to lead isotope analysis[J].Analytical Chemistry,87:1152-1157.
    Hoskin P W O and Schaltegger U.2003.The composition of zircon and igneous and metamorphic petrogenesis[J].Reviews in Mineralogy and Geochemistry,53(1):27-62.
    Jung S and Pfander J A.2007.Source composition and melting temperatures of orogenic granitoids:Constraints from Ca O/Na2O,Al2O3/Ti O2and accessory mineral saturation thermometry[J].European Journal of Mineralogy,19(6):859-870.
    Liu Y S,Hu Z C,Gao S,et al.2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard[J].Chemical Geology,257:34-43.
    Liu Y S,Gao S,Hu Z C,et al.2010.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons of mantle xenoliths[J].Journal of Petrology,51:537-571.
    Ludwig K R.2003.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel[M].California,Berkeley:Berkeley Geochronology Center:39.
    Maniar P D and Piccoli P M.1989.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin,101:635-643.
    Middlemost E A K.1994.Naming materials in the magma/igneous rock system[J].Earth-Science Reviews,37(3-4):215-224.
    Pearce J A,Harris N B W,Tindle A G,et al.1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology,25(4):956-983.
    Pitcher W S.1987.Granites and yet more granites forty years on[J].Geologische Rundschau,76(1):51-79.
    Peccerillo A and Taylor S R.1976.Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area,northern Turkey[J].Contributions to Mineralogy and Petrology,58(1):63-81.
    Rudnick R L and Gao S.2003.Composition of the continental crust[J].Rudnick R L(ed.)Treatise on Geochemistry.Amsterdam:Elsevier,3:1-64.
    Sun S S and Mc Donough W F.1989.Chemical and isotope systematics of oceanic basalts:Implications for mantle composition and processes[J].Saunders A D and Norry M J(eds.).Magmatism in Ocean Basins.Spec.Publ.Geol.Soc.Lond.,42:313-345.
    Shen P,Shen Y C,Pan H D,et al.2012.Geochronology and isotope geochemistry of the Baogutu porphyry copper deposit in the West Junggar region,Xinjiang,China[J].Journal of Asian Earth Sciences,49(0):99-115.
    Whalen J B,Currie K L and Chappell B W.1987.A-type granites:Geochemical characteristics,discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology,95:407-419.
    Wilhem C,Windley B and Stampfli G M.2012.The Altaids of Central Asia:A tectonic and evolutionary innovative review[J].Earth Science Reviews,113(3-4):303-341.
    Wolf M B and London D.1994.Apatite dissolution into peraluminous haplogranitic melts:an experimental study of solubilities and mechanism[J].Geochimica et Cosmochimica Acta,58:4127-4145.
    Xiao W J,Windley B F,Yuan C,et al.2009.Paleozoic multiple subduction-accretion processes of the southern Altaids[J].American Journal of Science,309(3):221-270.
    Xiao W J,Han C M,Yuan C,et al.2008.Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang,NWChina:Implications for the tectonic evolution of central Asia[J].Journal of Asian Earth Sciences,32(2):102-117.
    Zong K Q,Klemd R,Yuan Y,et al.2017.The assembly of Rodinia:The correlation of early Neoproterozoic(ca.900 Ma)high-grade metamorphism and continental arc formation in the southern Beishan Orogen,southern Central Asian Orogenic Belt(CAOB)[J].Precambrian Research,290:32-48.
    Zhang J E,Xiao W J,Han C M,et al.2011.A Devonian to Carboniferous intra-oceanic subduction system in Western Junggar,NW China[J].Lithos,125(1-2):592-606.
    Zhu Y F,Chen B,Xu X,et al.2013.A new geological map of the western Junggar,north Xinjiang(NW China):Implications for Paleoenvironmental reconstruction[J].Episodes,36(3):205-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700