金属有机框架纳米功能界面的构筑及用于电化学同时检测嘌呤代谢物
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rational Design of Metal Organic Framework Nanocomposite-based Functionalized Interface for Simultaneous Electrochemical Determination of Purine Metabolites
  • 作者:王婷婷 ; 张杰 ; 王沈帅 ; 王秀云
  • 英文作者:WANG Ting-Ting;ZHANG Jie;WANG Shen-Shuai;WANG Xiu-Yun;School of Chemistry, Dalian University of Technology;
  • 关键词:铁基金属有机框架材料 ; 电化学还原石墨烯 ; 同时检测 ; 嘌呤代谢物
  • 英文关键词:Iron-based terephthalate metal-organic framework;;Electrochemicaaly reduced graphene;;Simultaneous detection;;Purine metabolites
  • 中文刊名:FXHX
  • 英文刊名:Chinese Journal of Analytical Chemistry
  • 机构:大连理工大学化学学院;
  • 出版日期:2019-05-21 15:25
  • 出版单位:分析化学
  • 年:2019
  • 期:v.47
  • 基金:国家自然科学基金项目(No.21205008);; 中央高校基本科研业务费专项(No.DUT16LK25)资助~~
  • 语种:中文;
  • 页:FXHX201907009
  • 页数:8
  • CN:07
  • ISSN:22-1125/O6
  • 分类号:71-78
摘要
同时检测DNA代谢产物黄嘌呤(XA)、次黄嘌呤(HX)和尿酸(UA)对代谢异常引起的相关疾病的早期诊断及预防具有十分重要的意义。本研究基于羟基功能化金属有机框架材料(OH-MIL-101(Fe),记为OH-MOFs)及电化学还原氧化石墨烯(ERGO)的协同催化作用,设计并构筑了OH-MOFs-ERGO纳米功能界面,实现了电化学法同时检测血清中尿酸、黄嘌呤和次黄嘌呤。通过超声混合法制备纳米复合功能材料,应用XRD、FT-IR和UV-vis等方法对材料进行了表征,通过滴涂法及电化学还原法在玻碳电极(GCE)表面构筑了OH-MOFs-ERGO/GCE。此修饰电极检测UA、XA和HX的线性范围分别为0.20~1150μmol/L、0.15~800μmol/L和0.40~600μmol/L,检出限分别为0.12、0.10和0.20μmol/L(S/N=3),实际血清样品中加标回收率在96.1%~106.6%之间。本方法为嘌呤代谢相关的生理病理研究提供了一种简单快速的检测方法。
        The simultaneous and sensitive detection of metabolites of DNA(uric acid(UA), xanthine(XA) and hypoxanthine(HX)) is of great significance for the early diagnosis and prevention of related diseases caused by abnormal metabolism. In this study, hydroxyl functionalized metal-organic framework(OH-MOFs) and electrochemically reduced graphene oxide(ERGO) nano-functional interface was designed and constructed based on the synergic effect of FeⅢ terephthalate OH-MOFs(OH-MIL-101(Fe) and ERGO for simultaneous detection of UA, XA and HX in blood. Nano-composites were prepared by ultrasonic mixing method, and were characterized by X-ray diffraction(XRD), Fourier transform infrared(FT-IR) and UV-Vis spectroscopic methods. By casting the surface of glassy carbon electrode(GCE) with the composite and electrochemical reduction of the modified electrode, OH-MOFs-ERGO/GCE was obtained. Under the optimum conditions, the oxidation peak currents of UA, XA and HX were linearly correlated to their concentrations in the ranges of 0.20-1150 μmol/L, 0.15-800 μmol/L, and 0.40-600 μmol/L, respectively. The detection limits for UA, XA and HX were 0.12, 0.10 and 0.20 μmol/L(S/N=3), respectively. The recoveries of UA, XA and HX in real serum samples were between 99.5% and 105.8%. The proposed electrode was expected to provide a simple and easy detection method for the physiological and pathological study of purine metabolism.
引文
1 Lan D X,Zhang L.J.Electroanal.Chem.,2015,757:107-115
    2 Liu G,Ma W,Luo Y,Sun D M,Shao S.J.Anal.Methods Chem.,2014:984314
    3 Wang Y,Tong L L.Sens.Actuators B,2010,150(1):43-49
    4 Wang Y.Colloids Surf.B,2011,88:614-621
    5 Si Y,Park J W,Jung S,Hwang G,Goh E,Lee H.Biosens.Bioelectron.,2018,121:265-271
    6 Rita F,Maria L P,Jose B.Clin.Biochem.,2013,46(7-8):665-669
    7 Zhao S L,Wang J S,Ye F G,Liu Y M.Anal.Biochem.,2008,378(2):127-131
    8 Arivazhagan M,Jeyavijayan S.Spectrochim.Acta,2011,79(1):161-168
    9 Kalimuthu P,Leimkuhler S,Bernhardt P V.Anal.Chem.,2012,84:10359-10365
    10 SUN Kai,SUN Deng-Ming.Chinese J.Anal.Chem.,2014,42(7):991-996孙凯,孙登明.分析化学,2014,42(7):991-996
    11 Karthik P,Vinoth R,Zhang P,Choi W,Balaraman E.ACS Appl.Energy Mater.,2018,1(5):1913-1923
    12 ZHANG Dan-Yang,CAI Yao,SHEN Yu,XU Wen-Ju.Chinese J.Anal.Chem.,2018,46(11):1794-1801张丹阳,蔡瑶,沈雨,许文菊.分析化学,2018,46(11):1794-1801
    13 Zheng Y,Zheng S,Xue H,Pang H.Adv.Funct.Mater.,2018,28:1804950
    14 Zhu Q,Xu Q.Chem.Soc.Rev.,2014,43:5468-5512
    15 Jo G,Choe M,Cho C,Kim J H,Park W,Lee S,Hong W,Kim T,Park S,Hong B H,Kahng Y H,Lee T.Nanotechnology,2010,21:175-201
    16 Marinho B,Ghislandi M,Tkalya E,Koning C E.Powder Technol.,2012,221:351-358
    17 Balandin A,Ghosh S,Bao W,Calizo I,Teweldebrhan D,Miao F,Lau C N.Nano Lett.,2008,8(3):902-907
    18 Wang X,Wang Q X,Wang Q H,Gao F,Gao F,Yang Y Z,Guo H X.ACS Appl.Mater.Interfaces,2014,6(14):11573-11580
    19 Li Y Z,Huang F C,Du H J,Liu W B,Li Y W,Ye J S.J.Electroanal.Chem.,2013,709:65-69
    20 Yin D D,Liu J,Bo X J,Li M,Guo L P.Electrochim.Acta,2017,247:41-49
    21 Lebedev O I,Millange F,Serre C,van Tendeloo,Ferey G.Chem.Mater.,2005,17(26):6525-6527
    22 Li S X,Sun SL,Wu H Z,Wei C H,Hu Y.Catal.Sci.Technol.,2018,8(6):1696-1703
    23 Tang X Q,Zhang Y D,Jiang Z W,Wang D M,Huang C Z,Li Y F.Talanta,2018,179:43-50
    24 Hummers J,William S,Richard E.J.Am.Chem.Soc.,1958,80(6):1339-1339
    25 Akiyama G,Matsuda R,Sato H,Hori A,Takata M.Kitagawa S.Micropor.Mesopor.Mater.,2012,157:89-93
    26 Karthik P,Vinoth R,Zhang P,Choi W Y,Balaraman E,Neppolian B.ACS Appl.Energy Mater.,2018,1(5):1913-1923
    27 Sarauli D,Borowski A,Peters K,Schulz B,Fattakhova-Rohlfing D,Leimkühler S,Lisdat F.ACS Catal.,2016,6(10):7152-7159
    28 Wang X,Xi M,Guo M,Sheng F,Xiao G,Wu S,Uchiyama S,Matsuura H.Analyst,2016,141:1077-1082
    29 Kalimuthu P,Leimkuühler S,Bernhardt P V.J.Phys.Chem.B,2011,115(11):2655-2662
    30 Ojani R,Alinezhad A,Abedi Z.Sens.Actuators B,2013,188:621-630
    31 Luo A,Lian Q W,An Z Z,Li Z,Guo Y Y,Zhang D X,Xue Z H,Zhou X B,Lu X Q.J.Electroanal.Chem.,2015,756:22-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700