固溶处理对旋压C-276合金超薄管材组织和性能影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and Properties of Spinning Ultra-Thin Wall C-276 Alloy Tubes with Solution Treatment
  • 作者:刘成 ; 刘贤钙 ; 张晓宇 ; 郭胜利 ; 郑弃非 ; 李德富
  • 英文作者:Liu Cheng;Liu Xiangai;Zhang Xiaoyu;Guo Shengli;Zheng Qifei;Li Defu;National Engineering Technology Center for Nonferrous Metal Composites,General Research Institute for Nonferrous Metals;
  • 关键词:C-276合金 ; 固溶处理 ; EBSD ; 晶界特征分布 ; 力学性能
  • 英文关键词:C-276 alloy;;solution treatment;;EBSD;;grain boundary character distribution;;mechanical properties
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:北京有色金属研究总院国家有色金属复合材料工程技术研究中心;
  • 出版日期:2016-07-29 10:51
  • 出版单位:稀有金属
  • 年:2018
  • 期:v.42;No.262
  • 基金:国家自然科学基金项目(51205028)资助
  • 语种:中文;
  • 页:ZXJS201801007
  • 页数:8
  • CN:01
  • ISSN:11-2111/TF
  • 分类号:48-55
摘要
采用电子背散射衍射(EBSD)研究了固溶温度对旋压C-276合金超薄壁管材再结晶、晶界特征分布的影响;运用拉伸试验机和扫描电子显微镜(SEM)研究了固溶温度对合金力学性能及断口形貌的影响。结果表明:随固溶温度升高,完全再结晶比率上升;固溶温度为900℃时,合金未充分再结晶,完全再结晶比率为65%;固溶温度为1100℃时,完全再结晶比率达到99.4%。固溶温度高于1000℃时晶粒快速长大,固溶温度达1200℃时,平均晶粒尺寸为77.1μm。随固溶温度升高,Σ3晶界比率呈增高趋势,固溶温度900℃时,Σ3晶界所占比率为30.5%,固溶温度升高到1200℃时,Σ3晶界比率达到57.1%。固溶温度由900℃升高到1200℃,超薄壁管材室温抗拉强度R_m从1256 MPa降低到745 MPa,屈服强度R_(p0.2)从915 MPa降低到340 MPa,伸长率A_(11.3)从17.5%上升到65.5%。
        The effect of solution temperature on microstructure and mechanical properties of spinning ultra-thin wall C-276 alloy tubes was investigated by electron backscatter diffraction( EBSD),scanning electron microscope( SEM) and tensile tests. Results showed that recrystallization ratio increased with solution temperature increasing. The recrystallization ratio of sample increased from 65. 0% to 99. 4% with solution temperature increasing from 900 to 1100 ℃. The grain of sample grew up quickly when solution temperature exceeded 1000 ℃. The average grain size of the alloy was 77. 1 μm after solution treatment at 1200 ℃. The results also revealed that increasing solution temperature led to an increase in the proportion of Σ3 grain boundary of sample. With solution temperature increasing from 900 to 1200 ℃,the proportion of Σ3 grain boundary of sample increased from 30. 5% to 57. 1%. Furthermore,with solution temperature increasing from 900 to 1200 ℃,the room temperature tensile strength R_m decreased from 1256 to 745 MPa,the yield strength R_(p0. 2) decreased from 1256 to 745 MPa,and elongation A_(11. 3) increased from 17. 5% to 65. 5%.
引文
[1]Jiao S Y,Zhu G H,Dong J X,Zhang Q Q.Carbide evolution and Mo depletion law in Hastelloy C-276[J].Journal of Materials Engineering,2011,(1):47.(焦少阳,朱冠妮,董建新,章清泉.Hastelloy C-276中碳化物析出及晶界贫Mo规律研究[J].材料工程,2011,(1):47.)
    [2]Akhter J I,Shaikh M A,Ahmad M.Effect of aging on the hardness and impact properties of hastelloy C-276[J].Journal of Materials Science Letters,2001,20(4):333.
    [3]Miyata K,Igarashi M.Effect of ordering on susceptibility to hydrogen embrittlement of a Ni-base super alloy[J].Metallurgical&Materials Transactions A,1992,23(23):953.
    [4]Raghavan M,Berkowitz B J,Scanlon J C.Electron microscopic analysis of heterogeneous precipitates in hastelloy C-276[J].Metallurgical Transactions A,1982,13(6):979.
    [5]Tawancy H M,Herchenroeder R B,Asphahani A I.High-performance Ni-Cr-Mo-W alloys[J].JOM,1983,35(6):37.
    [6]Palumbo G,Aust K T.Structure-dependence of intergranular corrosion in high purity nickel[J].Acta Metall.Materialia,1990,38:2343.
    [7]Huang Q Y,Li H K.High Temperature Alloy[M].Beijing:Metallurgical Industry Press,2000.101.(黄乾尧,李汉康.高温合金[M].北京:冶金工业出版社,2000.101.)
    [8]Liu K,Shan Y,Yang Z.Effect of heat treatment on prior grain size and mechanical property of a maraging stainless steel[J].Journal of Materials Science and Technology,2006,22(6):769.
    [9]Minkovitz E,Eliezer D.Grain-size and heat-treatment effects in hydrogen-assisted cracking of austenitic stainless steels[J].Journal of Materials Science,1982,17(11):3165.
    [10]Ono K,Nemoto T,Sasaki R.Effects of Solution treat-ment on high-temperature properties of 18Cr-8Ni-Ti steel[J].Tetsu-to-Hagane,1962,48(2):148.
    [11]Pu S,Xie G,Zheng W,Wang D,Lu Y Z,Lou L H,Feng Q.Effect of W and Re on deformation and recrtstallization of solution heat treated Ni-based single crystal superalloys[J].Acta Metallurgica Sinica,2015,51(2):239.(濮晟,谢光,郑伟,王栋,卢玉章,楼琅洪,冯强.W和Re对固溶态镍基单晶高温合金变形和再结晶的影响[J].金属学报,2015,51(2):239.)
    [12]Hu Z L,Yuan S J,Wang X S,Liu H J.Microstructure and mechanical properties of Al-Cu-Mg alloy tube fabricated by friction stir welding and tube spinning[J].Scripta Materialia,2012,66:427.
    [13]Haghdadi N,Zarei-Hanzaki A,Abou-Ras D.Microstructure and mechanical properties of commercially pure aluminum processed by accumulative back extrusion[J].Materials Science&Engineering A,2013,584:73.
    [14]Chen Y,Xu W C,Shan D B,Guo B.Microstructure evolution of TA15 titanium alloy during hot power spinning[J].Trans.Nonferrous Met.Soc.China,2011,21:323.
    [15]Humphreys F J,Hatherly M.Recrystallization and Related Annealing Phenomena.Amsterdam[M].Boston:Elsevier,2004.91.
    [16]Li F L,Fu R,Feng D,Yin F J,Tian Z L.Hot deformation characteristics of Ni-base wrought superalloy CDS&W FGH96[J].Chinese Journal of Rare Metals,2015,39(3):201.(李福林,付锐,冯涤,尹法杰,田志凌.镍基变形高温合金CDS&W FGH96热变形行为研究[J].稀有金属,2015,39(3):201.)
    [17]Hu G X.Foundation of Materials Science[M].Shanghai:Shanghai Jiaotong University Press,2000.180.(胡赓祥.材料科学基础[M].上海:上海交通大学出版社,2000.180.)
    [18]Ma Y,Lu D G,Mao X P,Zhang L Y,Cai J.The microscopic analysis of durable resistance under the condition of 650℃of C-276 alloy[J].Rare Metal Materials and Engineering,2010,39(9):1571).(马雁,陆道纲,毛雪平,张立殷,蔡军.C-276合金650℃下持久抗力的显微分析[J].稀有金属材料与工程,2010,39(9):1571.)
    [19]Chen Q Q,Song G S,Xu Y,Zhang S H.Analysis on the twinning of FCC metals by EBSD[J].Forging&Stamping Technology,2015,40(5):140.(陈强强,宋广胜,徐勇,张士宏.FCC金属孪晶的EBSD分析[J].锻压技术,2015,40(5):140.)
    [20]Wang W G,Zhou B X,Feng L,Zhang X,Xia S.Grain boundary character distributions(GBCD)of coldrolled Pb-Ca-Sn-Al alloy during recovery and recrystallization[J].Acta Metallurgica Sinica,2006,42(7):715.(王卫国,周邦新,冯柳,张欣,夏爽.冷轧变形Pb-Ca-Sn-Al合金在回复和再结晶过程中的晶界特征分布[J].金属学报,2006,42(7):715.)
    [21]Xia S,Zhou B X,Chen W J.Deformation and heat treatment on the influence of 690 alloy grain boundary character distribution[J].Metal Materials and Engineering,2008,37(6):999.(夏爽,周邦新,陈文觉.形变及热处理对690合金晶界特征分布的影响[J].稀有金属材料与工程,2008,37(6):999.)
    [22]Xia S,Zhou B X,Chen W J.Grain boundary character distribution of 690 alloy and its influence on intergranular corrosion[J].Journal of Chinese Electron Microscopy Society,2008,27(6):461.(夏爽,周邦新,陈文觉.690合金的晶界特征分布及其对晶间腐蚀的影响[J].电子显微学报,2008,27(6):461.)
    [23]Yong Q L.The Second Phase in Steel[M].Beijing:Metallurgical Industry Press,2006.11.(雍歧龙.钢铁材料中第二相[M].北京:冶金工业出版社,2006.11.)
    [24]Zhu B H,Hu X C,Wu M H,Wang P J,Liu Y C.Tensile properties and fractographs of finish forged bar of TC1 titanium alloy[J].The Chinese Journal of Nonferrous Metals,2010,20(B10):144.(朱宝辉,胡晓晨,吴孟海,王培军,刘彦昌.TC1钛合金精锻棒材的拉伸性能及断口形貌[J].中国有色金属学报,2010,20(B10):144.)
    [25]Wang X H,Yang D X,Xie J P,Wang W Y,Wang A Q.Effect of rare earth on microstructure and property of medium carbon medium alloy ZG70Cr2Mn Ni Si steel[J].Journal of the Chinese Society of Rare Earths,2013,31(3):315.(王星贺,杨涤心,谢敬佩,王文焱,王爱琴.稀土对中碳中合金ZG70Cr2Mn Ni Si钢组织和性能的影响[J].中国稀土学报,2013,31(3):315.)
    [26]Lin Y C,Deng J,Jiang Y Q,Dong X W,Guan L.Effects of initialδphase on hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy[J].Materials Science and Engineering:A,2014,598:251.
    [27]Yu M,Niu Z J,Mao J H,Xue S,Jia B R.Work hardening and recrystallization of cold drawn Ti Ni shape memory alloy[J].Chinese Journal of Rare Metals,2015,39(8):680.(于孟,牛中杰,毛江虹,薛飒,贾兵然.钛镍形状记忆合金冷拉拔的加工硬化及再结晶[J].稀有金属,2015,39(8):680.)
    [28]Bazarnik P,Huang Y,Lewandowska M,Langdonbc T G.Structural impact on the Hall-Petch relationship in an Al-5Mg alloy processed by high-pressure torsion[J].Materials Science&Engineering A,2015,626:9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700