微观组织特征对模拟海水中搅拌摩擦加工Ti-6Al-4V合金腐蚀磨损性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Microstructure on Tribocorrosion Behavior of Ti-6Al-4V Alloy by Friction Stir in Synthetic Seawater
  • 作者:蒋璐瑶 ; 郭勇义 ; 黄伟九 ; 刘成龙 ; 陈琛辉
  • 英文作者:JIANG Lu-yao;GUO Yong-yi;HUANG Wei-jiu;LIU Cheng-long;CHEN Chen-hui;School of Materials Science and Engineering,Chongqing University of Technology;Chongqing Key Laboratory of Mold Technology,Chongqing University of Technology;Research Institute for New Materials Technology,Chongqing University of Arts and Sciences;
  • 关键词:Ti-6Al-4V合金 ; 搅拌摩擦加工 ; 微观组织 ; 摩擦磨损 ; 腐蚀
  • 英文关键词:Ti-6Al-4V alloy;;friction stir processing;;microstructure;;wear and tribology;;corrosion
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:重庆理工大学材料科学与工程学院;重庆理工大学模具技术重庆市重点实验室;重庆文理学院新材料技术研究院;
  • 出版日期:2019-05-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:重庆市基础科学与前沿技术研究专项项目(cstc2015jcyjBX0048);; 重庆市社会事业与民生保障科技创新专项(cstc2017shmsA130047);; 国家“万人计划”科技创新领军人才项目~~
  • 语种:中文;
  • 页:BMJS201905032
  • 页数:8
  • CN:05
  • ISSN:50-1083/TG
  • 分类号:221-228
摘要
目的研究搅拌摩擦加工细晶Ti-6Al-4V合金在模拟海水中微观组织特征与腐蚀磨损性能的关系。方法通过控制搅拌摩擦加工工艺(200 r/min-25 mm/min和200 r/min-50 mm/min)获得具有等轴细晶组织和片层状α相组织的Ti-6Al-4V合金。使用往复磨损试验机和电化学工作站,在模拟海水中对Ti-6Al-4V合金进行腐蚀磨损实验,获得摩擦系数-时间曲线、动电位极化曲线等一系列摩擦磨损和电化学曲线。使用激光共聚焦显微镜和扫描电子显微镜对磨痕进行观察,计算磨损率,并分析磨损机制。通过计算腐蚀磨损分量研究材料损耗的主要影响因素。结果在腐蚀磨损中,因表面氧化膜被破坏,具有细晶结构的Ti-6Al-4V合金晶界面积大,腐蚀电位降低,但腐蚀电流密度小于原始试样。搅拌摩擦加工试样在腐蚀磨损实验中的摩擦系数更稳定,OCP条件下,具有细小等轴晶组织的搅拌摩擦加工Ti-6Al-4V合金的摩擦系数最低,磨损率较原始试样低20%。片层组织特征Ti-6Al-4V合金因微观力学性能各向异性而影响对磨球的行进路线,犁沟较混乱。原始样品的磨损机制主要为磨粒磨损和腐蚀磨损,搅拌摩擦加工后,样品在模拟海水中的磨损机制为磨粒磨损、分层磨损和腐蚀磨损。结论等轴细晶组织Ti-6Al-4V合金在模拟海水中表现出低的磨损率和低的摩擦系数,该组织特征具有最优的耐腐蚀磨损性能。
        The work aims to study the relationship between microstructure and tribocorrosion resistance of fine grain Ti-6 Al-4 V alloy by friction stir in synthetic seawater. Ti-6 Al-4 V alloy with equiaxed grains and fine lamellar sub-structure αphase was obtained by controlling the stir friction processes(200 r/min-25 mm/min and 200 r/min-50 mm/min). Tribocorrosion tests were conducted to Ti-6 Al-4 V alloy with reciprocating tribometer and electrochemical workstation in the synthetic seawater to obtain the coefficient of friction-time curves, potentiodynamic polarization curves, etc. Laser confocal microscope and field emission scanning electron microscope were used to observe the wear scar, calculate the wear rate and analyze the wear mechanism. The factors mainly including the material wear was investigated by calculating the corrosion components. During corrosion, the oxide layers of samples were destroyed and the Ti-6 Al-4 V alloy with fine grains occupied larger boundaries, the corrosion potentials decreased and corrosion current densities were smaller than that of original samples. Coefficient of friction curves of FSPed samples were stable. The FSPed sample with fine equiaxed grains showed the lowest COF and the wear rate after tribocorrosion test decreased by 20% compared with that of original samples. The FSPed Ti-6 Al-4 V alloy with fine lamellar sub-structure had chaotic furrows due to the influence of anisotropy of micromechanical properties on the travel route of grinding balls. The wear mechanisms of original samples were abrasive wear and corrosion wear, while those of FSPed samples in synthetic seawater were abrasive wear, delamination and corrosion wear. The FSPed Ti-6 Al-4 V alloy with fine equiaxed grains shows lower wear rate and low friction coefficient during tribocorrosion tests, so the structure characteristics have the best corrosion and wear resistance.
引文
[1]CHEN G,ZHANG G,YIN Q,et al.Microstructure evolution of electron beam welded joints of Ti-43Al-9V-0.3Yand Ti-6Al-4V alloys[J].Materials letters,2018,233:336-339.
    [2]LOPEZ-ORTEGA A,ARANA J L,RODRIGUEZ E,et al.Corrosion,wear and tribocorrosion performance of a thermally sprayed aluminum coating modified by plasma electrolytic oxidation technique for offshore submerged components protection[J].Corrosion science,2018,143:258-280.
    [3]TOTOLIN V,PEJAKOVIC V,CSANYI T,et al.Surface engineering of Ti6Al4V surfaces for enhanced tribocorrosion performance in artificial seawater[J].Materials&design,2016,104:10-18.
    [4]路富刚,魏世忠.腐蚀磨损的研究现状与发展趋势[J].铸造技术,2018(8):1857-1860.LU Fu-gang,WEI Shi-zhong.Research status and development trend of corrosion and wear[J].Foundry technology,2018(8):1857-1860.
    [5]JIANG L,HUANG W,LIU C,et al.Microstructure,texture evolution and mechanical properties of pure Ti by friction stir processing with slow rotation speed[J].Materials characterization,2019,148:1-8.
    [6]STOLYAROV V V,SHUSTER L S,MIGRANOV M S,et al.Reduction of friction coefficient of ultrafine-grained CP titanium[J].Materials science and engineering:A,2004,371(1-2):313-317.
    [7]FARNOUSH H,ABDI BASTAMI A,SADEGHI A,et al.Tribological and corrosion behavior of friction stir processed Ti-CaP nanocomposites in simulated body fluid solution[J].Journal of the mechanical behavior of biomedical materials,2013,20:90-97.
    [8]LI B,SHEN Y,HU W,et al.Surface modification of Ti-6Al-4V alloy via friction-stir processing:microstructure evolution and dry sliding wear performance[J].Surface and coatings technology,2014,239:160-170.
    [9]JIANG L,HUANG W,LIU C,et al.The effects of stored energy on wear resistance of friction stir processed pure Ti[J].Results in physics,2019,12:1276-1284.
    [10]DAVOREN B,FERG E E,HATTINGH D.Tribocorrosion of friction-stir-welded Ti6AL4V in 3.5%NaCl aqueous solution[J].Wear,2017,390-391:246-252.
    [11]SESHACHARYULU T,MEDEIROS S C,MORGAN J T,et al.Hot deformation and microstructural damage mechanisms in extra-low interstitial(ELI)grade Ti-6Al-4V[J].Materials science&engineering a,2000,279(1):289-299.
    [12]PILCHAK A L,WILLIAMS J C.Microstructure and texture evolution during friction stir processing of fully lamellar Ti-6Al-4V[J].Metallurgical and materials transactions A:Physical metallurgy and materials science,2011,42(3):773-794.
    [13]YOON S,UEJI R,FUJII H.Microstructure and texture distribution of Ti-6Al-4V alloy joints friction stir welded belowβ-transus temperature[J].Journal of materials processing technology,2016,229:390-397.
    [14]ZHAO Z B,WANG Q J,HU Q M,et al.Effect ofβ(110)texture intensity onα-variant selection and microstructure morphology duringβ→αphase transformation in nearαtitanium alloy[J].Acta materialia,2017,126:372-382.
    [15]GEY N,HUMBERT M.Characterization of the variant selection occurring during theα→β→αphase transformations of a cold rolled titanium sheet[J].Acta materialia,2002,50(2):277-287.
    [16]HUANG W J,JIANG L Y,LIU C L,et al.The microstructure morphology and texture evolution ofα-Ti in Ti-6Al-4V alloy during friction stir processing with low rotation speed and traverse speed[J].Advanced engineering materials,2019,1900250:1-11.
    [17]ZHANG Q Y,WANG S Q,ZHOU Y,et al.Artificial oxide-containing tribo-layers and their effect on wear performance of Ti-6Al-4V alloy[J].Tribology international,2017,105:334-344.
    [18]WANG Z,ZHOU Y,WANG H,et al.Tribocorrosion behavior of Ti-30Zr alloy for dental implants[J].Materials letters,2018,218:190-192.
    [19]WATSON S W,FRIEDERSDORF F J,MADSEN B W,et al.Methods of measuring wear-corrosion synergism[J].Wear,1995,181-183:476-484.
    [20]陈君,阎逢元,王建章.海水环境下TC4钛合金腐蚀磨损性能的研究[J].摩擦学学报,2012(1):1-6.CHEN Jun,YAN Feng-yuan,WANG Jian-zhang.Corrosion wear properties of TC4 titanium alloy in artificial seawater[J].Tribology,2012(1):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700