聚磷酸配体修饰调控氧化镍纳米颗粒在丙烷氧化脱氢反应中的选择性(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tuning catalytic selectivity of propane oxidative dehydrogenation via surface polymeric phosphate modification on nickel oxide nanoparticles
  • 作者:杜凯敏 ; 郝梦佳 ; 李志年 ; 洪伟 ; 刘娟娟 ; 肖丽萍 ; 邹世辉 ; Hisayoshi ; Kobayashi ; 范杰
  • 英文作者:Kaimin Du;Mengjia Hao;Zhinian Li;Wei Hong;Juanjuan Liu;Liping Xiao;Shihui Zou;Hisayoshi Kobayashi;Jie Fan;Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University;College of Materials & Environmental Engineering, Hangzhou Dianzi University;Department of Chemistry and Materials Technology, Kyoto Institute of Technology;
  • 关键词:氧化镍纳米颗粒 ; 表面聚磷酸 ; 丙烷氧化脱氢 ; 选择性调控 ; 吸附
  • 英文关键词:Nickel oxide nanoparticle;;Surface polymeric phosphate;;Propane oxidative dehydrogenation;;Tuning selectivity;;Adsorption
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:浙江大学化学系浙江省应用化学重点实验室;杭州电子科技大学材料与环境工程学院;京都工艺纤维大学化学与材料科学系;
  • 出版日期:2019-05-29
  • 出版单位:催化学报
  • 年:2019
  • 期:v.40
  • 基金:was supported by the National Natural Science Foundation of China(91545113,21703050);; the China Postdoctoral Science Foundation(2017M610363,2018T110584);; Shell Global Solutions International B.V.(PT71423,PT74557);; the Fok Ying Tong Education Foundation(131015);; the Science&Technology Program of Ningbo(2017C50014)~~
  • 语种:英文;
  • 页:CHUA201907007
  • 页数:14
  • CN:07
  • ISSN:21-1601/O6
  • 分类号:97-110
摘要
利用有机配体对金属纳米颗粒表面进行修饰来构建配体–金属界面是一种简单且高效的调控纳米催化剂催化选择性和稳定性的策略.这种调控主要来源于配体与金属间的电子效应及位阻效应.然而到目前为止,这一策略多局限于液相反应,对于高温(>300 oC)气相反应涉及不多,这主要是因为高温反应条件下有机配体分子不稳定.因此,开发稳定的配体及修饰方法是克服该局限性并将配体修饰策略应用到一些重要的高温反应中的关键.本文以聚磷酸根作为一种高效且热稳定性良好的无机配体对氧化镍纳米颗粒表面进行修饰.红外光谱、X射线光电子能谱、X射线衍射和透射电镜等分析证实,聚磷酸物种原位修饰在氧化镍表面之后,氧化镍纳米颗粒的物性结构未发生明显变化,但聚磷酸物种与NiO之间存在一定的电子相互作用.将具有不同磷修饰量的氧化镍催化剂应用于极具挑战的丙烷氧化脱氢制丙烯反应中.结果表明,聚磷酸修饰后,氧化镍纳米催化剂的丙烯选择性有了极大提高.相比单纯纳米氧化镍(10%丙烷转化率, 19%丙烯选择性),经聚磷酸配体修饰后,在相同丙烷转化率下产物丙烯的选择性提高了2–3倍(10%丙烷转化率, 66%丙烯选择性).稳定性实验(450 oC, 70 h)和热重分析等结果表明,聚磷酸物种具有良好的热稳定性,可作为稳定的配体用于长时间高温催化测试.进一步采用动力学实验和丙烯脱附等方法及理论计算对反应机理进行了探究,认为配体的引入可以减弱丙烯在催化剂表面的吸附亲和性,进而提高丙烯选择性.本文研究结果证实了配体修饰这一策略在高温气相反应中应用的可行性,该策略有望在其他一些重要高温反应中得到进一步应用.
        Thermal stability has long been recognized as a major limitation for the application of ligand modification in high-temperature reactions. Herein, we demonstrate polymeric phosphate as an efficient and stable ligand to tune the selectivity of propane oxidative dehydrogenation. Beneficial from the weakened affinity of propene, NiO modified with polymeric phosphate shows a selectivity 2–3 times higher than NiO towards the production of propene. The success of this regulation verifies the feasibility of ligand modification in high-temperature gas-phase reactions and shines a light on its applications in other important industrial reactions.
引文
[1]Z.Q.Niu,Y.D.Li,Chem.Mater.,2014,26,72-83.
    [2]P.X.Liu,R.X.Qin,G.Fu,N.F.Zheng,J.Am.Chem.Soc.,2017,139,2122-2131.
    [3]G.X.Chen,C.F.Xu,X.Q.Huang,J.Y.Ye,L.Gu,G.Li,Z.C.Tang,B.H.Wu,H.Y.Yang,Z.P.Zhao,Z.Y.Zhou,G.Fu,N.F.Zheng,Nat.Mater.,2016,15,564-569.
    [4]Z.Cao,D.Kim,D.C.Hong,Y.Yu,J.Xu,S.Lin,X.D.Wen,E.M.Nichols,K.Jeong,J.A.Reimer,P.D.Yang,C.J.Chang,J.Am.Chem.Soc.,2016,138,8120-8125.
    [5]Y.Peng,B.Lu,N.Wang,L.G.Li,S.W.Chen,Phys.Chem.Chem.Phys.,2017,19,9336-9348.
    [6]T.Yoskamtorn,S.Yamazoe,R.Takahata,J.I.Nishigaki,A.Thivasasith,J.Limtrakul,T.Tsukuda,ACS Catal.,2014,4,3696-3700.
    [7]A.Fedorov,H.J.Liu,H.K.Lo,C.Copéret,J.Am.Chem.Soc.,2016,138,16502-16507.
    [8]B.H.Wu,H.Q.Huang,J.Yang,N.F.Zheng,G.Fu,Angew.Chem.Int.Ed.,2012,51,3440-3443.
    [9]J.J.Liu,V.Fung,Y.Wang,K.M.Du,S.R.Zhang,L.Nguyen,Y.Tang,J.Fan,D.Jiang,F.F.Tao,Appl.Catal.B,2018,237,957-969.
    [10]J.J.Liu,S.R.Zhang,Y.Zhou,V.Fung,L.Nguyen,D.Jiang,W.J.Shen,J.Fan,F.F.Tao,ACS Catal.,2016,6,4218-4228.
    [11]S.T.Marshall,M.O’Brien,B.Oetter,A.Corpuz,R.M.Richards,D.K.Schwartz,J.W.Medline,Nat.Mater.,2010,9,853-858.
    [12]F.Cavani,F.Trifirò,Catal.Today,1995,24,307-313.
    [13]J.J.H.B.Sattler,J.Ruiz-Martinez,E.Santillan-Jimenez,B.M.Weckhuysen,Chem.Rev.,2014,114,10613-10653.
    [14]H.H.Kung,Adv.Catal.,1994,40,1-38.
    [15]F.Cavani,N.Ballarini,A.Cericola,Catal.Today,2007,127,113-131.
    [16]X.H.Cao,Y.M.Shi,W.H.Shi,G.Lu,X.Huang,Q.Y.Yan,Q.C.Zhang,H.Zhang,Small,2011,7,3163-3168.
    [17]I.Maarouf,A.Oulmekki,J.Toyir,F.Lefebvre,A.Harrach,M.Ijjaali,J.Mater.Environ.Sci.,2017,8,2722-2728.
    [18]E.J.Baran,R.C.Mercader,A.Massaferro,E.Kremer,Spectrochim.Acta Pt.A,2004,60,1001-1005.
    [19]J.H.Li,C.C.Wang,C.J.Huang,Y.F.Sun,W.Z.Weng,H.L.Wan,Appl.Catal.A,2010,382,99-105.
    [20]M.Sun,J.Z.Zhang,P.Putaj,V.Caps,F.Lefebvre,J.Pelletier,J.M.Basset,Chem.Rev.,2014,114,981-1019.
    [21]B.Frank,J.Zhang,R.Blume,R.Schl?gl,D.S.Su,Angew.Chem.Int.Ed.,2009,48,6913-6917.
    [22]J.T.Grant,C.A.Carrero,F.Goeltl,J.Venegas,P.Mueller,S.P.Burt,S.E.Specht,W.P.McDermott,A.Chieregato,I.Hermans,Science,2016,354,1570-1573.
    [23]L.Shi,D.Q.Wang,W.Song,D.Shao,W.P.Zhang,A.H.Lu,ChemCat Chem,2017,9,1788-1793.
    [24]L.Shi,D.Q.Wang,A.H.Lu,Chin.J.Catal.,2018,39,908-913.
    [25]Q.H.Zhang,C.J.Cao,T.Xu,M.Sun,J.Z.Zhang,Y.Wang,H.L.Wan,Chem.Commun.,2009,2376-2378.
    [26]Y.Z.Duan,Y.M.Zhou,Y.W.Zhang,X.L.Sheng,M.W.Xue,Catal.Lett.,2011,141,120-127.
    [27]L.Y.Bai,Y.M.Zhou,Y.W.Zhang,H.Liu,X.L.Sheng,Ind.Eng.Chem.Res.,2009,48,9885-9891.
    [28]Y.Y.Li,H.Cheng,T.Yao,Z.H.Sun,W.S.Yan,Y.Jiang,Y.Xie,Y.F.Sun,Y.Y.Huang,S.J.Liu,J.Zhang,Y.N.Xie,T.D.Hu,L.N.Yang,Z.Y.Wu,S.Q.Wei,J.Am.Chem.Soc.,2012,134,17997-18003.
    [29]J.Datka,A.M.Turek,J.M.Jehng,I.E.Wachs,J.Catal.,1992,135,186-199.
    [30]M.C.Payne,M.P.Teter,D.C.Allan,T.Arias,J.Joannopoulos,Rev.Mod.Phys.,1992,64,1045-1097.
    [31]V.Milman,B.Winkler,J.A.White,C.J.Pickard,M.C.Payne,E.V.Akhmatskaya,R.H.Nobes,Int.J.Quantum Chem.,2000,77,895-910.
    [32]J.P.Perdew,K.Burke,M.Ernzerhof,Phys.Rev.Lett.,1996,77,3865-3868.
    [33]D.Vanderbilt,Phys.Rev.B,1990,41,7892-7895.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700