基于三维蒙特卡洛方法的搅拌摩擦焊晶粒生长模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Three dimensional Monte Carlo simulation of grain growth in friction stir welding
  • 作者:张昭 ; 胡超平 ; 吴奇
  • 英文作者:ZHANG Zhao;HU Chao-ping;WU Qi;State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Engineering Mechanics,Faculty of Vehicle Engineering and Mechanics,Dalian University of Technology;
  • 关键词:搅拌摩擦焊 ; 湍流模型 ; 三维蒙特卡洛模拟 ; 晶粒分布
  • 英文关键词:friction stir welding;;turbulent model;;3D Monte Carlo simulation;;grain size
  • 中文刊名:SXGC
  • 英文刊名:Journal of Plasticity Engineering
  • 机构:大连理工大学运载工程与力学学部工程力学系工业装备结构分析国家重点实验室;
  • 出版日期:2017-06-27 09:43
  • 出版单位:塑性工程学报
  • 年:2017
  • 期:v.24
  • 基金:国家自然科学基金面上项目(11572074);; 国家重点基础研究发展(973)计划资助项目(2011CB013401)
  • 语种:中文;
  • 页:SXGC201703038
  • 页数:6
  • CN:03
  • ISSN:11-3449/TG
  • 分类号:237-242
摘要
采用三维湍流模型进行搅拌摩擦焊接过程的数值模拟,结合三维蒙特卡洛模型模拟焊接区域的晶粒生长,通过与文献实验数据的比较验证了模型的有效性。通过流体模型中物质点运动和温度历程结合晶粒生长模型,模拟了焊接搅拌区晶粒结构演变,研究发现搅拌区搅拌头前进侧晶粒尺寸大于返回侧尺寸,结果与文献中晶粒分布相符。模型展示了实验切面中难以观测到的晶粒三维特征,对于定量了解焊接搅拌区三维空间晶粒组织形貌特征以及晶粒尺寸分布有促进作用。
        The 3D fluid turbulence model was used to simulate the friction stir welding process. Three-dimensional Monte Carlo model was then applied to simulate the grain growth in the welding zone. The comparison with experimental data shows the validity of the proposed model. The grain evolution in the stirring zone was simulated by combination of the movements of material particles and temperature histories in the fluid model and the grain growth model. Results indicate that the grain size at advancing side is larger than the retreating side,which agrees well with the experimental observations. The grain structure in the stirring zone can be three dimensionally revealed,which is hardly directly revealed in experiments. This work can be beneficial to the quantitative understanding of the morphology and sizes of the grains in stirring zone in friction stir welding.
引文
[1]MISHRA R S,MA Z Y.Friction stir welding and processing[J].Mater.Sci.Eng.R,2005,50:1-78.
    [2]NANDAN R,DEBROY T,BHADESHIA H K D H.Recent advances in friction-stir welding—process,weldment structure and properties[J].Prog.Mater.Sci.,2008,53:980-1023.
    [3]EL-DANAF E A,EL-RAYES M M.Microstructure and mechanical properties of friction stir welded 6082 AA in as welded and post weld heat treated conditions[J].Mater.Des.,2013,46:561-572.
    [4]JAYARAMAN M,BALASUBRAMANIAN V.Effect of process parameters on tensile strength of friction stir welded cast A356 aluminum alloy joints[J].Trans.Nonferrous Met.Soc.China,2013,23:605-615.
    [5]PAN W X,LI D S,TARTAKOVSKY A M,et al.A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding:process modeling and simulation of microstructure evolution in a magnesium alloy[J].Int.J.Plasticity,2013,48:189-204.
    [6]CHANG C I,LEE C J,HUANG J C.Relationship between grain size and Zener-Hollomon parameter during friction stir processing in AZ31 Mg alloys[J].Scripta Mater.,2004,51:509-514.
    [7]张昭,吴奇.基于材料流动轨迹的搅拌摩擦焊接晶粒及焊接区大小预测模型[J].机械工程学报,2015,51(2):43-48.ZHANG Zhao,WU Qi.Computational model for predictions on welding zones and grain sizes based on the flow trace in friction stir welding[J].Journal of Mechanical Engineering,2015,51(2):43-48.
    [8]张昭,吴奇.搅拌针对搅拌摩擦焊接搅拌区晶粒影响研究[J].兵器材料科学与工程,2014,37(5):32-35.ZHANG Zhao,WU Qi.Grain sizes in stirring zone of friction stir welding with different pins[J].Ordnance Material Science and Engineering,2014,37(5):32-35.
    [9]张昭,张洪武.搅拌摩擦焊接的三维欧拉模型[J].塑性工程学报,2014,21(1):127-130.ZHANG Zhao,ZHANG Hongwu.3D eulerian model of friction stir welding[J].Journal of Plasticity Engineering,2014,21(1):127-130.
    [10]ROBSON J D,CAMPBELL L.Model for grain evolution during friction stir welding of aluminum alloys[J].Sci.Technol.Weld.&Joi.,2010,15(2):171-176.
    [11]张昭,张洪武.搅拌摩擦焊中动态再结晶及硬度分布的数值模拟[J].金属学报,2006,42(9):998-1002.ZHANG Zhao,ZHANG Hongwu.Numerical simulation of dynamic recrystallization and hardness distribution in friction stir welding[J].Acta Metallurgica Sinica.2006,42(9):998-1002.
    [12]CHO H H,HONG S T,ROH J H,et al.Three-dimensional numerical and experimental investigation on friction stir welding processes of ferritic stainless steel[J].Acta Mater.,2013,61:2649-2661.
    [13]张昭,吴奇,万震宇,等.基于蒙特卡洛方法的搅拌摩擦焊晶粒生长模拟[J].塑性工程学报,2015,22(4):172-177.ZHANG Zhao,WU Qi,WAN Zhenyu,et al.Monte Carlo based Simulation of grain growth in friction stir welding[J].Journal of Plasticity Engineering,2015,22(4):172-177.
    [14]SISTA S,YANG Z,DEBROY T.Three-dimensional Monte Carlo simulation of grain growth in the heat-affected zone of a 2.25Cr-1Mo steel weld[J].Metall.and Mater.Trans.B,2000,31:529-536.
    [15]GAO J H,THOMPSON R G.The relationship between real time and Monte Carlo time[J].Acta Mater.,1996,44:4565-4575.
    [16]DRIVER G W,JOHNSON K E.Interpretation of fusion and vaporisation entropies for various classes of substances,with a focus on salts[J].The Journal of Chemical Thermodynamics,2014,70:207-213.
    [17]YANG C C,ROLLETT A D,MULLINS W W.Measuring relative grain boundary energies and mobilities in an aluminum foil from triple junction geometry[J].Scripta Mater.,2001,44:2735-2740.
    [18]KIRCH D M,JANNOT E,MORA L A B,et al.Inclination dependence of grain boundary energy and its impact on the faceting and kinetics of tilt grain boundaries in aluminum[J].Acta Mater.,2008,56(18):4998-5011.
    [19]YANG Z,SISTA S,ELMER J W,et al.Three dimensional Monte Carlo simulation of grain growth during GTA welding of titanium[J].Acta Mater.,2000,48(20):4813-4825.
    [20]SUTTON M A,REYNOLDS A P,YANG B C.Mode I fracture and microstructure for 2024-T3 friction stir welds[J].Mater.Sci.Eng.R,2003.A354:6-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700