复合材料转向架构架及其疲劳损伤分析方法研究综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of composite bogie frame and its fatigue damage analysis methods
  • 作者:王曦 ; 付晨
  • 英文作者:WANG Xi;FU Chen;School of Mechanical,Electronic and Control Engineering,Beijing Jiaotong University;
  • 关键词:复合材料 ; 转向架构架 ; 疲劳 ; 损伤 ; 分层
  • 英文关键词:composite;;bogie frame;;fatigue;;damage;;delamination
  • 中文刊名:BFJT
  • 英文刊名:Journal of Beijing Jiaotong University
  • 机构:北京交通大学机械与电子控制工程学院;
  • 出版日期:2019-03-18 15:22
  • 出版单位:北京交通大学学报
  • 年:2019
  • 期:v.43;No.203
  • 基金:国家自然科学基金(11790281)~~
  • 语种:中文;
  • 页:BFJT201901005
  • 页数:12
  • CN:01
  • ISSN:11-5258/U
  • 分类号:47-58
摘要
复合材料相比于金属材料具有更优良的性能,可以满足轨道交通车辆对轻量化、低能耗、舒适性的需要,逐渐成为各国轨道交通领域关注的热点.中国将复合材料应用于轨道交通车辆结构的研究起步较晚,缺乏相关经验,需要开展关于转向架构架这种大型主承载结构疲劳损伤分析的深入研究.本文介绍了国内外应用复合材料技术于转向架构架上的研究进展,重点综述了在复合材料转向架构架上广泛应用的纤维增强复合材料层合板的疲劳损伤分析方法,简要分析了几种疲劳分层损伤模型,并对目前研究中面临的困难和挑战进行了总结.
        Composite materials have better performance than metal materials,which can meet the needs of railway vehicles including light weight,low energy consumption and comfort,thus having gradually become a hotspot in the field of railway transit around the world.China's research on the application of composite materials in vehicle structure of railway transit started late and we lacked relevant experience.It is necessary to carry out in-depth research on fatigue damage analysis of large scale structures such as the bogie frame which bear main load.This paper introduces the research progress of the application of composite technique on bogie frame at home and abroad.Then the fatigue damage analysis methods of fiber reinforced composite laminates which are widely used in composite bogie frames are reviewed with emphasis.Furthermore,several fatigue delamination damage models are briefly analyzed.Finally the difficulties and challenges faced in current researches are summarized.
引文
[1]沈观林,胡更开,刘彬.复合材料力学[M].2版.北京:清华大学出版社,2013:3-16.SHEN Guanlin,HU Gengkai,LIU Bin.Mechanics of composite materials[M].2nd ed.Beijing:Tsinghua University Press,2013:3-16.(in Chinese)
    [2]张丽荣,陈煜,张娟歌,等.复合材料结构部件在高速动车组上的应用研究及性能评价[J].电力机车与城轨车辆,2015,38(增1):29-33.ZHANG Lirong,CHEN Yu,ZHANG Juange,et al.Research on application of composite material structural parts on high speed EMU and its performance valuation[J].Electric Locomotives&Mass Transit Vehicles,2015,38(S1):29-33.(in Chinese)
    [3]丁叁叁,田爱琴,王建军,等.高速动车组碳纤维复合材料应用研究[J].电力机车与城轨车辆,2015,38(增1):1-8.DING Sansan,TIAN Aiqin,WANG Jianjun,et al.Research on application of carbon fiber composite in high speed EMUs[J].Electric Locomotives&Mass Transit Vehicles,2015,38(S1):1-8.(in Chinese)
    [4]邬志华,曾竟成,刘钧.高速列车及其用复合材料的发展[J].材料导报,2011,25(21):108-114.WU Zhihua,ZENG Jingcheng,LIU Jun.Development of high-speed train and its composites[J].Materials Review,2011,25(21):108-114.(in Chinese)
    [5]杨永勤,孙加平,张丽荣,等.浅析复合材料在高速动车组上的应用[J].铁道车辆,2014,52(5):20-22.YANG Yongqin,SUN Jiaping,ZHANG Lirong,et al.Analysis of the application of composite materials on high speed multiple units[J].Rolling Stock,2014,52(5):20-22.(in Chinese)
    [6]李天亮.碳纤维复合材料在轨道客车上应用前景分析[J].装备制造技术,2016(4):159-161.LI Tianliang.Analysis of application prospect of carbon fiber composite materials railway vehicle[J].Equipment Manufacturing Technology,2016(4):159-161.(in Chinese)
    [7]刘晓波,杨颖.碳纤维增强复合材料在轨道车辆中的应用[J].电力机车与城轨车辆,2015,38(4):72-76.LIU Xiaobo,YANG Ying.Application of carbon fiberreinforced polymer in rail vehicle[J].Electric Locomotives&Mass Transit Vehicles,2015,38(4):72-76.(in Chinese)
    [8]严隽耄,傅茂海.车辆工程[M].北京:中国铁道出版社,2008:31-32.YAN Junmao,FU Maohai.Vehicle engineering[M].Beijing:China Railway Publishing House,2008:31-32.(in Chinese)
    [9]GEUENICH W,GUNTHER C,LEO R.The dynamics of fiber composite bogies with creep-controlled wheelsets[J].Vehicle System Dynamics,1984,12(1/3):134-140.
    [10]LEO R J.Fiber composite material bogies for advanced passenger trains[C]//Seminar of Institution of Mechanical Engineers on Materials for Passenger Rolling Stock.London,1987.
    [11]ROLF J L.复合材料在高性能铁路车辆转向架上的应用[J].孙国平,译.国外机车车辆工艺,1996(4):1-8.ROLF J L.Application of composite materials in high performance railway vehicle bogies[J].SUN Guoping,trans.Foreign Locomotive and Rolling Stock Technology,1996(4):1-8.(in Chinese)
    [12]虞大联,邓小军,刘韶庆,等.复合材料技术在转向架中的应用[J].电力机车与城轨车辆,2015,38(增1):17-22.YU Dalian,DENG Xiaojun,LIU Shaoqing,et al.Application of composite material technology on bogie[J].Electric Locomotives&Mass Transit Vehicles,2015,38(S1):17-22.(in Chinese)
    [13]HOU J,JERONIMIDIS G.A novel bogie design made of glass fibre reinforced plastic[J].Materials&Design,2012,37:1-7.
    [14]CHVOJANA J,VACLAVIKA J.Experimental methods for the GRP bogie structure integrity assessment[J].Procedia Engineering,2015,114:627-634.
    [15]CHVOJAN R,JOZEFY R,MAYER R,et al.Shaker rig test of EB25GRP boogie[J].EPJ Web of Conferences,2010,6:19007.
    [16]MAURIN L,BOUSSOIR J,ROUGEAULT S,et al.FBG-based smart composite bogies for railway applications[C]//15th Optical Fiber Sensors Conference Technical Digest.Portland,2002:91-94.
    [17]KAWASAKI.efWING:Weaving a New Future[EB/OL].[2018-11-06].http://global.kawasaki.com/en/mobility/rail/bogie/efwing.html.
    [18]JEON K W,SHIN K B,KIM J S.A study on evaluation of fatigue strength of a GFRP composite bogie frame for urban subway vehicles[J].Advanced Composite Materials,2013,22(4):213-225.
    [19]KIM J S,YOON H J,LEE W G.A study on comparisons of composite and conventional steel bogie frames[J].Journal of Mechanical Science and Technology,2016,30(12):5439-5446.
    [20]KIM J S,LEE W G,KIM I K,et al.Natural frequency evaluation of a lightweight GFRP composite bogie frame[J].International Journal of Precision Engineering and Manufacturing,2015,16(1):105-111.
    [21]KIM J S,YOON H J.Structural behaviors of a GFRPcomposite bogie frame for urban subway trains under critical load conditions[J].Procedia Engineering,2011,10(1):2375-2380.
    [22]KIM J S,SHIN K B,YOON H J,et al.Durability evaluation of a composite bogie frame with bow-shaped side beams[J].Journal of Mechanical Science and Technology,2012,26(2):531-536.
    [23]KIM J S,LEE W G,KIM I K.Manufacturing and testing of a GFRP composite bogie frame with straight side beam members[J].Journal of Mechanical Science and Technology,2013,27(9):2761-2767.
    [24]LEE W G,KIM J S,YOON H J,et al.Structural behavior evaluation of T-joints of the composite bogie frame under bending[J].International Journal of Precision Engineering and Manufacturing,2013,14(1):129-135.
    [25]YAO K,YANG Y,LI H,et al.Material characterization of a multi-cavity composite structure for the bogie frame of urban maglev train[J].Composites Part B:Engineering,2016,99:277-287.
    [26]澎湃新闻.未来感十足!新一代碳纤维地铁车辆全球亮相[EB/OL].(2018-09-20)[2018-11-06].https://www.thepaper.cn/newsDetail_forward_2459104.THE PAPER.China’s new generation of CFRPsubway vehicle debut to the world with a sense of the future[EB/OL].(2018-09-20)[2018-11-06].https://www.thepaper.cn/newsDetail_forward_2459104.(in Chinese)
    [27]BATHIAS C.An engineering point of view about fatigue of polymer matrix composite materials[J].International Journal of Fatigue,2006,28(10):1094-1099.
    [28]CAOUS D,BOIS C,WAHL J C,et al.A method to determine composite material residual tensile strength in the fibre direction as a function of the matrix damage state after fatigue loading[J].Composites Part B:Engineering,2017,127:15-25.
    [29]KAMINSKI M,LAURIN F,MAIRE J F,et al.Fatigue damage modeling of composite structures:the Onera viewpoint[J].Aerospace Lab,2015(9):1-12.
    [30]ANSARI T A,SINGH K K,AZAM M S.Fatigue damage analysis of fiber-reinforced polymer composites-A review[J].Journal of Reinforced Plastics&Composites,2018,37(9):636-654.
    [31]DEGRIECK J,VAN PAEPEGEM W.Fatigue damage modeling of fibre-reinforced composite materials:Review[J].Applied Mechanics Reviews,2001,54(4):279-300.
    [32]LIAN W,YAO W.Fatigue life prediction of composite laminates by FEA simulation method[J].International Journal of Fatigue,2010,32(1):123-133.
    [33]PASSIPOULARIDIS V A,PHILIPPIDIS T P.A study of factors affecting life prediction of composites under spectrum loading[J].International Journal of Fatigue,2009,31(3):408-417.
    [34]SEVENOIS R D B,PAEPEGEM W V.Fatigue damage modeling techniques for textile composites:Review and comparison with unidirectional composite modeling techniques[J].Applied Mechanics Reviews,2015,67(2):021401-1-021401-12.
    [35]YAO W X,HIMMEL N.A new cumulative fatigue damage model for fibre-reinforced plastics[J].Composites Science and Technology,2000,60(1):59-64.
    [36]吴富强,姚卫星.一种复合材料层合板的S-N曲线模型[J].机械强度,2004,26(增):127-129.WU Fuqiang,YAO Weixing.S-N curve model of composite laminate[J].Journal of Mechanical Strength,2004,26(S):127-129.(in Chinese)
    [37]ELLYIN F,EL-KADI H.A fatigue failure criterion for fiber reinforced composite laminae[J].Composite Structures,1990,15(1):61-74.
    [38]FAWAZ Z,ELLYIN F.Fatigue failure model for fibre-reinforced materials under general loading conditions[J].Journal of Composite Materials,1994,28(15):1432-1451.
    [39]HASHIN Z,ROTEM A.A fatigue failure criterion for fiber reinforced materials[J].Journal of Composite Materials,1973,7(4):448-464.
    [40]PHILIPPIDIS T P,VASSILOPOULOS A P.Fatigue strength prediction under multiaxial stress[J].Journal of Composite Materials,1999,33(17):1578-1599.
    [41]KAWAI M,ITOH N.A failure-mode based anisomorphic constant life diagram for a unidirectional carbon/epoxy laminate under off-axis fatigue loading at room temperature[J].Journal of Composite Materials,2014,48(5):571-592.
    [42]VASSILOPOULOS A P,MANSHADI B D,KELLERT.Influence of the constant life diagram formulation on the fatigue life prediction of composite materials[J].International Journal of Fatigue,2010,32(4):659-669.
    [43]VASSILOPOULOS A P,MANSHADI B D,KELLERT.Piecewise non-linear constant life diagram formulation for FRP composite materials[J].International Journal of Fatigue,2010,32(10):1731-1738.
    [44]宗俊达,姚卫星.FRP复合材料剩余刚度退化复合模型[J].复合材料学报,2016,33(2):280-286.ZONG Junda,YAO Weixing.Compound model of residual stiffness degradation for FRP composites[J].Acta Materiae Compositae Sinica,2016,33(2):280-286.(in Chinese)
    [45]POST N L,CASE S W,LESKO J J.Modeling the variable amplitude fatigue of composite materials:Areview and evaluation of the state of the art for spectrum loading[J].International Journal of Fatigue,2008,30(12):2064-2086.
    [46]KASSAPOGLOU C,KAMINSKI M.Modeling damage and load redistribution in composites under tensiontension fatigue loading[J].Composites Part A:Applied Science&Manufacturing,2011,42(11):1783-1792.
    [47]REIFSNIDER K L.Fatigue of composite material[M].Amsterdam:Elsevier Science Publishers B V,1991:1-12.
    [48]CHOU P C,CROMAN R.Degradation and suddendeath models of fatigue of graphite/epoxy composites[C]//Composite Materials:Testing and Design(Fifth Conference).New Orleans,1979:431-454.
    [49]VASSILOPOULOS A P.Fatigue life prediction of composites and composite structures[M].Cambridge:Woodhead Publishing,2010:1-436.
    [50]VASSILOPOULOS A P,KELLER T.Fatigue of fiberreinforced composites[M].London:Springer Press,2011:155-190.
    [51]LEE J W,ALLEN D H,HARRIS C E.Internal state variable approach for predicting stiffness reductions in fibrous laminated composites with matrix cracks[J].Journal of Composite Materials,1989,23(12):1273-1291.
    [52]COATS T W,HARRIS C E.Experimental verification of a progressive damage model for IM7/5260laminates subject-ed to tension-tension fatigue[J].Journal of Composite Materials,1995,29(3):280-305.
    [53]LO D C,COATS T W,HARRIS C E,et al.Progressive damage analysis of laminated composite(PDALC)-A computational model implemented in the NASA COMETFinite Element Code[M].Washington:National Aeronautics and Space Administration,1996.
    [54]SHOKRIEH M M,LESSARD L B.Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments-I.Modelling[J].International Journal of Fatigue,1997,19(3):201-207.
    [55]SHOKRIEH M M,LESSARD L B.Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments-II Experimental evaluation[J].International Journal of Fatigue,1997,19(3):209-217.
    [56]SHOKRIEH M M,LESSARD L B.Progressive fatigue damage modeling of composite materials,Part I:Modeling[J].Journal of Composite Materials,2000,34(13):1056-1080.
    [57]SHOKRIEH M M,LESSARD L B.Progressive fatigue damage modeling of composite materials,Part II:material characterization and model verification[J].Journal of Composite Materials,2000,34(13):1081-1116.
    [58]SHOKRIEH M,YAZDI H M.A simplified approach to fatigue damage modelling of composite laminates with stress concentration:regional elements model[J].Iranian Polymer Journal,2009,18(3):233-246.
    [59]TAHERI-BEHROOZ F,SHOKRIEH M M,LESSARD LB.Progressive fatigue damage modeling of cross-ply laminates,II:experimental evaluation[J].Journal of Composite Materials,2010,44(10):1261-1277.
    [60]SHOKRIEH M M,TAHERI-BEHROOZ F.Progressive fatigue damage modeling of cross-ply laminates,I:modeling strategy[J].Journal of Composite Materials,2010,44(10):1217-1231.
    [61]SHOKRIEH M M,TAHERI-BEHROOZ F.A unified fatigue life model based on energy method[J].Composite Structures,2006,75(1/4):444-450.
    [62]MEJLEJ V G,OSORIO D,VIETOR T.An improved fatigue failure model for multidirectional fiber-reinforced composite laminates under any stress ratios of cyclic loading[J].Procedia CIRP,2017,66:27-32.
    [63]NADERI M,MALIGNO A.Finite element simulation of fatigue life prediction in carbon/epoxy laminates[J].Journal of Composite Materials,2013,47(4):475-484.
    [64]PAPANIKOS P,TSERPES K I,PANTELAKIS S.Modelling of fatigue damage progression and life of CFRPlaminates[J].Fatigue&Fracture of Engineering Materials&Structures,2003,26(1):37-47.
    [65]TSERPES K I,PAPANIKOS P,LABEAS G,et al.Fatigue damage accumulation and residual strength assessment of CFRP laminates[J].Composite Structures,2004,63(2):219-230.
    [66]ELIOPOULOS E N,PHILIPPIDIS T P.A progressive damage simulation algorithm for GFRP composites under cyclic loading.Part II:FE implementation and model validation[J].Composites Science and Technology,2011,71(5):750-757.
    [67]ELIOPOULOS E N,PHILIPPIDIS T P.A progressive damage simulation algorithm for GFRP composites under cyclic loading.Part I:Material constitutive model[J].Composites Science and Technology,2011,71(5):742-749.
    [68]NIKISHKOV Y,MAKEEV A,SEON G.Progressive fatigue damage simulation method for composites[J].International Journal of Fatigue,2013,48(5):266-279.
    [69]DONG H,LI Z,WANG J,et al.A new fatigue failure theory for multidirectional fiber-reinforced composite laminates with arbitrary stacking sequence[J].International Journal of Fatigue,2016,87:294-300.
    [70]REIFSNIDER K L.Damage and damage mechanics[J].Composite Materials Series,1991,4:11-77.
    [71]REIFSNIDER K L.The critical element model:a modeling philosophy[J].Engineering Fracture Mechanics,1986,25(5/6):739-749.
    [72]HAHN H T.Composite materials:fatigue and fracture[M].Philadephia:American Society for Testing and Materials,1993:298-313.
    [73]QIAN C,WESTPHAL T,KASSAPOGLOU C,et al.Development of a multi-fibre unit cell for use in modelling of fatigue of unidirectional composites[J].Composite Structures,2013,99:288-295.
    [74]QIAN C,WESTPHAL T,NIJSSEN R P L.Micromechanical fatigue modelling of unidirectional glass fibre reinforced polymer composites[J].Computational Materials Science,2013,69:62-72.
    [75]SEVENOIS R D B,GAROZ D,GILABERT F A,et al.Microscale based prediction of matrix crack initiation in UD composite plies subjected to multiaxial fatigue for all stress ratios and load levels[J].Composites Science and Technology,2017,142:124-138.
    [76]KRAUSE D.A physically based micromechanical approach to model damage initiation and evolution of fiber reinforced polymers under fatigue loading conditions[J].Composites Part B:Engineering,2016,87:176-195.
    [77]ZHAO L,SHAN M,HONG H,et al.A residual strain model for progressive fatigue damage analysis of composite structures[J].Composite Structures,2017,169:69-78.
    [78]KORDKHEILI H S A,TOOZANDEHJANI H,SOLTANIZ.A progressive multi-scale fatigue model for life prediction of laminated composites[J].Journal of Composite Materials,2017,51(20):2949-2960.
    [79]SAYYIDMOUSAVI A,BOUGHERARA H,FAWAZZ.A multiscale approach for fatigue life prediction of polymer matrix composite laminates[J].Journal of Reinforced Plastics and Composites,2015,34(13):1099-1109.
    [80]LI W,CAI H,LI C,et al.Micro-mechanics of failure for fatigue strength prediction of bolted joint structures of carbon fiber reinforced polymer composite[J].Composite Structures,2015,124:345-356.
    [81]XIAO J,FANG E,LUA J,et al.A multiscale fatigue damage prediction for notched composite components[C]//58th AIAA/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Grapevine,2017.
    [82]QUARESIMIN M,CARRARO P A,MIKKELSEN L P,et al.Damage evolution under cyclic multiaxial stress state:A comparative analysis between glass/epoxy laminates and tubes[J].Composites Part B:Engineering,2014,61:282-290.
    [83]TALREJA R.Damage and fatigue in composites-Apersonal account[J].Composites Science and Technology,2008,68(13):2585-2591.
    [84]SENTHIL K,AROCKIARAJAN A,PALANINATHANR,et al.Defects in composite structures:Its effects and prediction methods-A comprehensive review[J].Composite Structures,2013,106:139-149.
    [85]BAK B L V,SARRADO C,TURON A,et al.Delamination under fatigue loads in composite laminates:Areview on the observed phenomenology and computational methods[J].Applied Mechanics Reviews,2014,66(6):060803.
    [86]PASCOE J A,ALDERLIESTEN R C,BENEDICTUSR.Methods for the prediction of fatigue delamination growth in composites and adhesive bonds-A critical review[J].Engineering Fracture Mechanics,2013,112-113:72-96.
    [87]ROSE C A,DVILA C G,LEONE F A.Analysis methods for progressive demage of composite structures[R].Hampton:NASA,2013.
    [88]PENG L,ZHANG J,ZHAO L,et al.Mode I delamination growth of multidirectional composite laminates under fatigue loading[J].Journal of Composite Materials,2011,45(10):1077-1090.
    [89]ZHANG J,PENG L,ZHAO L,et al.Fatigue delamination growth rates and thresholds of composite laminates under mixed mode loading[J].International Journal of Fatigue,2012,40:7-15.
    [90]RYBICKI E F,KANNINEN M F.A finite element calculation of stress intensity factors by a modified crack closure integral[J].Engineering Fracture Mechanics,1977,9(4):931-938.
    [91]NIXON-PEARSON O J,HALLETT S R,HARPER PW,et al.Damage development in open-hole composite specimens in fatigue.Part 2:Numerical modelling[J].Composite Structures,2013,106:890-898.
    [92]NIXON-PEARSON O J,HALLETT S R,WITHERS PJ,et al.Damage development in open-hole composite specimens in fatigue.Part 1:Experimental investigation[J].Composite Structures,2013,106:882-889.
    [93]CHEN J F,MOROZOV E V,SHANKAR K.Simulating progressive failure of composite laminates including in-ply and delamination damage effects[J].Composites Part A:Applied Science and Manufacturing,2014,61:185-200.
    [94]JIMENEZ S,DUDDU R.On the parametric sensitivity of cohesive zone models for high-cycle fatigue delamination of composites[J].International Journal of Solids and Structures,2016,82:111-124.
    [95]TAO C,MUKHOPADHYAY S,ZHANG B,et al.An improved delamination fatigue cohesive interface model for complex three-dimensional multi-interface cases[J].Composites Part A:Applied Science and Manufacturing,2018,107:633-646.
    [96]AMIRI-RAD A,MASHAYEKHI M,VAN DER MEERF P,et al.A two-scale damage model for high cycle fatigue delamination in laminated composites[J].Composites Science and Technology,2015,120:32-38.
    [97]ELICES M,GUINEA G V,GMEZ J,et al.The cohesive zone model:advantages,limitations and challenges[J].Engineering Fracture Mechanics,2002,69(2):137-163.
    [98]GOUTIANOS S,SRENSEN B F.Path dependence of truss-like mixed mode cohesive laws[J].Engineering Fracture Mechanics,2012,91:117-132.
    [99]PARK K,PAULINO G H.Cohesive zone models:a critical review of traction-separation relationships across fracture surfaces[J].Applied Mechanics Reviews,2011,64(6):060802.
    [100]AMIRI-RAD A,MASHAYEKHI M.A cohesive zone approach for fatigue-driven delamination analysis in composite materials[J].Applied Composite Materials,2017,24(4):751-769.
    [101]BAK B L V,TURON A,LINDGAARD E,et al.Asimulation method for high-cycle fatigue-driven delamination using a cohesive zone model[J].International Journal for Numerical Methods in Engineering,2016,106(3):163-191.
    [102]TURON A,COSTA J,CAMANHO P P,et al.Simulation of delamination in composites under high-cycle fatigue[J].Composites Part A:Applied Science and Manufacturing,2007,38(11):2270-2282.
    [103]NOJAVAN S,SCHESSER D,YANG Q D.An in situ fatigue-CZM for unified crack initiation and propagation in composites under cyclic loading[J].Composite Structures,2016,146:34-49.
    [104]JIMENEZ S,LIU X,DUDDU R,et al.A discrete damage zone model for mixed-mode delamination of composites under high-cycle fatigue[J].International Journal of Fracture,2014,190(1/2):53-74.
    [105]BACARREZA O,ALIABADI M H.A novel methodology for fatigue delamination growth analysis of composites[J].Key Engineering Materials,2012,488-489:763-766.
    [106]BHATTACHARYA S,SINGH I V,MISHRA B K,et al.Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM[J].Computational Mechanics,2013,52(4):799-814.
    [107]CAMPILHO R D S G,BANEA M D,CHAVES F JP,et al.Extended finite element method for fracture characterization of adhesive joints in pure mode I[J].Computational Materials Science,2011,50(4):1543-1549.
    [108]IARVE E V,HOOS K H,BRAGINSKY M,et al.Progressive failure simulation in laminated composites under fatigue loading by using discrete damage modeling[J].Journal of composite materials,2016,51(15):2143-2161.
    [109]IARVE E V,GURVICH M R,MOLLENHAUER DH,et al.Mesh-independent matrix cracking and delamination modeling in laminated composites[J].International Journal for Numerical Methods in Engineering,2011,88(8):749-773.
    [110]FANG E,CUI X,LUA J.A continuum damage and discrete crack-based approach for fatigue response and residual strength prediction of notched laminated composites[J].Journal of Composite Materials,2017,51(15):2203-2225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700