近10年台湾海峡海面风场的时空特征变化动态分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:SPATIAL FEATURE AND SEASONAL VARIABILITY CHARACTERISTICS OF SEA SURFACE WIND FIELD IN TAIWAN STRAIT FROM 2007 TO 2017
  • 作者:潘卫华 ; 林毅
  • 英文作者:PAN Wei-hua;LIN Yi;Fujian Meteorological Institute of Science;Fujian Meteorological Observatory;
  • 关键词:海面风场 ; ASCAT ; 时空特征 ; EOF ; 台湾海峡
  • 英文关键词:sea wind field;;ASCAT;;spatial and temporal characteristics;;empirical orthogonal function;;Taiwan strait
  • 中文刊名:RDQX
  • 英文刊名:Journal of Tropical Meteorology
  • 机构:福建省气象科学研究所;福建省气象台;
  • 出版日期:2019-06-15
  • 出版单位:热带气象学报
  • 年:2019
  • 期:v.35
  • 基金:公益性行业(气象)科研专项(GYHY201406014);; 福建省科技计划重点项目(2014Y0041);; 福建省自然科学基金项目(2013J01152);; 华东区域气象科技协同创新基金合作项目(QYHZ201811)共同资助
  • 语种:中文;
  • 页:RDQX201903002
  • 页数:8
  • CN:03
  • ISSN:44-1326/P
  • 分类号:10-17
摘要
利用台湾海峡ASCAT海面风场数据和气象观测资料,通过EOF和统计方法综合分析台湾海峡海面风场2007—2017年10年的时空模态变化特征,使用Mann-Kendall法和滑动t-检验法对10年间海面风速进行突变检验,对台湾海峡海面风场季节变化时空特征进行分析研究。(1)"狭管效应"在台湾海峡海面风场上呈现明显的季节性特征,其中春季、秋季和冬季海面风场季节性特征显著,夏季表现不明显。受台湾岛地形和季风环流影响,台湾岛南北两端海面易出现风速增强的角流区,岛中央山脉背风区易出现低风速尾流区。(2) 10年间台湾海峡海面月平均风场EOF空间模态受台湾岛地形影响显著,台湾海峡海域为异常值偏差中心,易发生风速突然增幅和风向改变。时间模态大体表现为季节性振荡型变化,振幅在10年中表现为不活跃,呈逐年递减趋势。(3) Mann-Kendall法和滑动t-检验法等方法的突变检验结果表明风速并未发生显著性突变,10年间台湾海峡海面风速特征表现为从正相位向负相位的改变,且随着趋势持续加大,将可能发生风速突变。
        Using the empirical orthogonal function(EOF) and the statistical analysis method, the ASCAT satellite data and meteorological data were collected to explore the temporal mode characteristics and spatial modes of the sea wind field in the Taiwan Strait from 2007 to 2017. The Mann-Kendall method and the sliding t-test method were used to test the abrupt change of sea surface wind speed. Moreover, the change of seasonal variation of wind field and the possible mechanism in the Taiwan Strait were analyzed and discussed. The main conclusions were as followed.(1) There were"narrow valley effect"in the middle of the straits in spring, autumn and winter except for summer. Terrain had prominent effects on the formation of wind field features, which caused a "corner flow"on the north and south ends of the sea and"wake area"downstream of the central mountain of the island.(2) The EOF spatial pattern of the sea surface wind field in the Taiwan Strait was dominated by the north-south pattern and the center of the anomaly deviation of EOF lay in the narrow strait of sea field as it was affected by the island terrain, which often caused the wind speed to increase. The EOF time mode was the winter-summer monsoon oscillation type, which was affected by the island topography and monsoon. It was noteworthy that the amplitude was decreasing in the past 10 years.(3) Results of comprehensive analysis of Mann-Kendall method and sliding t-test method showed that the wind speed characteristics of the Taiwan Strait had no significant mutation from 2007 to2017, but changed from positive phase to negative phase. If the trend continued to increase, a sudden change in wind speed might occur as a result of the island terrain and monsoon circulation in the Taiwan Strait.
引文
[1]张毅,蒋兴伟,林明森,等.星载微波散射计的研究现状及发展趋势[J].遥感信息,2009(6):87-94.
    [2]刘宇迪,任景鹏,周鑫.散射计风场的三维变分对海雾数值模拟的影响[J].应用气象学报,2011,22(4):472-481.
    [3] FIGA-SALDA譙A J, WILSON J J W, ATTEMA E, et al. The advanced scatterometer(ASCAT)on the meteorological operational(MetOp)platform:a follow on for European wind scatterometers[J]. Canadian Journal of Remote Sensing, 2002, 28(3):404-412.
    [4] PAN J Y, YAN X H, ZHANG Q N, et al. Interpretation of scatterometer ocean surface wind vector EOFs over the Northwestern Pacific[J].Remote Sensing of Environment, 2002, 84:53-68.
    [5] BENTAMY A, GRODSKY S A, CARTON J A, et al. Matching ASCAT and QuikSCAT winds[J]. J Geophys Res Ocean, 2012, 117(C2):138-144.
    [6]吴琼,王晓春,胡雅君,等.热带西太平洋海面高度变化与华南3—4月降水异常的关系[J].热带气象学报,2017,33(2):231-240.
    [7]方翔,咸迪,李小龙,等. QuikSCAT洋面风资料及其在热带气旋分析中的应用[J].气象,2007,33(3):33-39.
    [8] BENTAMY A, CROIZE-FILLON D, PERIGAUD C. Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observation[J]. Ocean Science, 2008, 4(4):265-274.
    [9]陈剑桥. 2008年冬季台湾海峡及其邻近海域QuikSCAT卫星遥感风场的检验及其应用分析[J].台湾海峡,2011,30(2):158-164.
    [10] SOISUVARN S, JELENAK Z, CHANG P S, et al. Validation of NOAA's near real-time ASCAT ocean vector winds[J]. IEEE International Geoscience and Remote Sensing Symposium.2008(IGARSS 2008). Boston:IEEE, 2008, I-118-I-121.
    [11]汪栋,张杰,范陈清,等.两种ASCAT散射计风产品的比较及评估[J].海洋科学,2016,40(4):108-115.
    [12]项杰,王慧鹏,王春明,等.南海海面风场变分融合的初步研究[J].热带气象学报,2015,31(2):153-160.
    [13] VERSPEEK J, STOFFELEN A, PORTABELLA M, et al. Validation and calibration of ASCAT using CMOD5.N[J]. IEEE Transactions on Geoscience&Remote Sensing, 2010, 48(1):386-395.
    [14]周旋,杨晓峰,李紫薇,等.降雨对C波段散射计测风的影响及其校正[J].物理学报,2012,61(14):532-542.
    [15] SOISUVARN S, JELENAK Z, CHANG P S, et al. CMOD5.H—ahigh wind geophysical model function for C-band vertically polarized satellite scatterometer measurements[J]. IEEE Transactions on Geoscience&Remote Sensing, 2013, 51(6):3 744-3 760.
    [16]王坚红,于华,苗春生,等.近海面风场对黄东海域海平面特征影响的分析与模拟[J].大气科学学报,2016,39(1):90-101.
    [17]安大伟,谷松岩,杨忠东,等.散射计海面非气旋风场块状模糊去除方法[J].应用气象学报,2012,23(4):485-492.
    [18]毛科峰,陈希,李妍,等.东中国海域交叉定标多平台合成洋面风场资料的初步评估[J].气象,2012,38(12):1 456-1 463.
    [19]张凯峰,邓婉月,周成钧,等. ASCAT月HY-2A风场产品在南海的精度评估[J].热带气象学报,2017,33(5):774-781.
    [20]旷芳芳,张友权,张俊鹏,等. 3种海面风场资料在台湾海峡的比较和评估[J].海洋学报,2015,37(5):44-53.
    [21]张增海,曹越男,刘涛,等. ASCAT散射计风场在我国近海的初步检验与应用[J].气象,2014,40(4):473-481.
    [22]谢小萍,魏建苏,黄亮. ASCAT近岸风场产品与近岸浮标观测风场对比[J].应用气象学报,2014,25(4):445-453.
    [23]姚日升,涂小萍,蒋璐璐,等.浙江近海冬季大风风速推算和ASCAT风速订正方法探讨[J].气象,2016,42(5):735-742.
    [24]徐蜜蜜,徐海明.我国近海大风分布特征及成因[J].热带气象学报,2010,26(6):716-723.
    [25]高珊.西太平洋台风影响福建近海海区的风场分布特点及数值研究[D].南京:南京信息工程大学,2006.
    [26]郭婷婷,高文洋,高艺,等.台湾海峡气候特点分析[J].海洋预报,2010,27(1):53-58.
    [27]吴息,白龙,崔方,等.海面与海岸陆面风速廓线特征[J].大气科学学报,2014,37(2):138-145.
    [28]李宏毅,林朝晖,宋燕,等.华南春季降水纬向非均匀分布及异常年大气环流特征分析[J].气象,2013,39(12):1 616-1 625.
    [29]庞轶舒,祝从文,刘凯.中国夏季降水异常EOF模态的时间稳定性分析[J].大气科学,2014,38(6):1 137-1 146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700