一种运载火箭用大功率电动伺服驱动器的散热设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Heat Dissipation Design of the High Power Electric Servo Driver of the Carrier Rocket
  • 作者:胡翔宇 ; 王尧尧 ; 周阳 ; 宋树伟 ; 于戈
  • 英文作者:HU Xiangyu;WANG Yaoyao;ZHOU Yang;SONG Shuwei;YU Ge;Shanghai Aerospace Control Technology Institute;Shanghai Engineering Research Center of Servo System;
  • 关键词:运载火箭 ; 伺服系统 ; 驱动器 ; 散热器 ; 热仿真
  • 英文关键词:carrier rockets;;servo system;;driver;;heat sink;;thermal simulation
  • 中文刊名:FKTC
  • 英文刊名:Flight Control & Detection
  • 机构:上海航天控制技术研究所;上海市伺服系统工程技术研究中心;
  • 出版日期:2019-03-25
  • 出版单位:飞控与探测
  • 年:2019
  • 期:v.2;No.005
  • 语种:中文;
  • 页:FKTC201902011
  • 页数:5
  • CN:02
  • ISSN:10-1567/TJ
  • 分类号:75-79
摘要
散热对电子设备的性能有着直接的影响,散热器被广泛应用于电子产品的热设计,以改善其散热能力,因此散热器应作为关键部件进行设计。针对航天领域使用的大功率电动伺服驱动器的散热问题,提出了通过热力学理论计算、指导散热器结构设计的方法。首先,通过理论计算结果确定散热器的结构尺寸,然后通过三维建模软件对散热器进行建模,并利用热仿真软件对所设计的散热器进行热仿真,最后搭建了伺服驱动器的热试验环境。仿真结果和试验数据均验证了该设计方法的正确性。
        Heat dissipation has a direct impact on the performance of electronic equipment.Radiator is widely used in the thermal design of electronic products to improve its heat dissipation capacity,so the radiator should be designed as a key component.Aiming at the problem of heat dissipation of high-power electric servo drivers used in aerospace,a method to guide the design of radiator structure by thermodynamic calculation is proposed.Firstly,the structure size of the radiator was determined by theoretical calculation results.Then the radiator was modeled by 3D modeling software,and the designed radiator was simulated by thermal simulation software.Finally,the thermal environment test of the servo driver was built.Simulation results and experimental data verified the correctness of the design method.
引文
[1]CHENG H C,CHUNG I C,CHEN W H.Thermal chip placement in MCMs using a novel hybrid optimization algorithm[J].IEEE Transactionson on Components,Packaging and Manufacturing Technology,2012,2(5):764-774.
    [2]YE L,TONG Z M,HUANG L P,et al.Studies on heat transfer performances of a heat pipe radiator used in desktop PC for CPU cooling[C]//Materials for Renewable Energy&Environment(ICMREE),2011IEEE International Conference on Materials for Renewable Energy&Environment,Shanghai,China,2011:2022-2026.
    [3]ZHANG Y,ZENG G,HOFFMAN C.Enhanced hot spot cooling using bonded superlattice microcoolers with a trench structure[J].IEEE Transactions on Components,Packaging and Manufacturing Technology,2008,31(3):552-558.
    [4]WU Y B,LIU G Y,XU N H,et al.Thermal resistance analysis and simulation of IGBT module with high power density[J].Applied Mechanics and Materials,2013(303-306):1902-1907.
    [5]GUO D P,YAO R T,QIAO Q D.CFD numerical simulation of drift diffusion of the NPP's cooling tower[C].The5th IEEE International Conference on Bioinformatics&Biomedical Engineering,Wuhan,2011:1-5.
    [6]刘会.基于Icepak的一种射频电源芯片散热器改进设计[J].机械工程与自动化,2017,3:92-94.LIU H.Optimal design of RF power supply heat sink with Icepak[J].Mechanical Engineering&Automation,2017,3:92-94(in Chinese).
    [7]CAMPBELL M I,AMON C H,CAGAN J.Optimal threedimensional placement of heat generating electronic components[J].Journal of Electronic Packaging,1997,119(2):106-113.
    [8]申传有.纯电动汽车电机控制器散热器的设计与优化[D].沈阳:辽宁工业大学,2014.SHEN C Y.The design and optimization of radiator in electric vehicle motor controller system[D].Shenyang:Liaoning University of Technology,2014(in Chinese).
    [9]MASOUD Z N,NAYFEH A H.Sway reduction on container cranes using delayed feedback controller[J].Nonlinear Dynamics,2003,34(3):347-358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700