进水模式对强化脱氮好氧颗粒污泥培养的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impacts of feeding mode on stable aerobic granular sludge cultivation for enhanced denitrification
  • 作者:金正宇 ; 郗皓 ; 苑泉 ; 王凯军
  • 英文作者:JIN Zheng-yu;XI Hao;YUAN Quan;WANG Kai-jun;State Key Joint Laboratory of Environmental Simulation and Pollution Control,School of Environment,Tsinghua University;Huadian Water Engineering Co.,LTD;
  • 关键词:好氧颗粒污泥 ; 强化脱氮 ; 进水模式 ; 高品质水
  • 英文关键词:aerobic granular sludge;;enhanced denitrification;;feeding mode;;high-quality effluent
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:清华大学环境学院环境模拟与污染控制国家重点联合实验室;华电水务工程有限公司;
  • 出版日期:2018-03-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金青年科学基金资助项目(51608298);; 国家水体污染控制与治理科技重大专项资助项目(2017ZX07102-003,2017ZX07103)
  • 语种:中文;
  • 页:ZGHJ201803018
  • 页数:8
  • CN:03
  • ISSN:11-2201/X
  • 分类号:137-144
摘要
针对不同进水模式对好氧颗粒污泥培养及强化脱氮效果的影响尚无统一定论的问题,系统比较研究了快速进水直接曝气、快速进水厌氧搅拌和厌氧推流慢速进水3种模式对好氧颗粒污泥形成特性及脱氮效果的影响.研究发现,快速进水直接曝气模式所形成颗粒污泥表面易生长丝状菌,颗粒粒径可达2.0mm以上,但易解体;快速进水厌氧搅拌模式可形成粒径多为1.5~2.0mm的好氧颗粒污泥,TN去除率达到80%,优于前种模式,但未能避免颗粒解体;厌氧推流慢速进水可获得粒径多为1.0~1.5mm的颗粒污泥,常规负荷下出水COD浓度约10~15mg/L,TN浓度小于1mg/L,TN去除率达90%,满足地表III类水标准.系统比较证实,厌氧推流慢速进水方式是实现强化脱氮好氧颗粒污泥培养的最佳模式.
        The role of feeding mode in cultivating stable aerobic granular sludge for enhanced denitrification was studied.Three typical modes,including direct aeration after fast feeding,anaerobic stirring after fast feeding and anaerobic plug-flow slow feeding,were compared in this study in terms of granular stability and denitrification performance.Large granules with a diameter over 2.0 mm formed in the first mode,but underwent severe filamentation and degranulation afterwards.Granules with an average diameter of 1.5~2.0 mm in the second mode achieved a TN removal of 80%,but failed to prevent degranulation.Anaerobic plug-flow slow feeding mode formed stable granules with an average diameter of 1.0~1.5 mm and managed effluent quality with a COD concentration of 10~15 mg/L and a TN concentration less than 1 mg/L(90% removal),which matched the requirement of surface water quality standards class III in China.As such,anaerobic plug-flow slow feeding was demonstrated the most promising feeding mode for stable aerobic granular sludge cultivation aiming at enhanced denitrification.
引文
[1]高景峰,陈冉妮,苏凯,等.好氧颗粒污泥同时脱氮除磷实时控制的研究[J].中国环境科学,2010,30(2):180-185.
    [2]de Bruin L M M,de Kreuk M K,van der Roest H F R,et al.Aerobic granular sludge technology:an alternative to activated sludge?[J].Water science and Technology:a Journal of the International Association on Water Pollution Research,2004,49(11/12):1-7.
    [3]Beun J J,Hendriks A,Van Loosdrecht M C M,et al.Aerobic granulation in a sequencing batch reactor[J].Water Research,1999,33(10):2283-2290.
    [4]Tay J H,Liu Q S,Liu Y.Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor[J].Journal of Applied Microbiology,2001,91(1):168-175.
    [5]Liu Y,Kong Y,Tay J,et al.Enhancement of start-up of pilot-scale granular SBR fed with real wastewater[J].Separation and Purification Technology,2011,82:190-196.
    [6]Beun J J,van Loosdrecht M C M,Heijnen J J.Aerobic granulation in a sequencing batch airlift reactor[J].Water Research,2002,36(3):702-712.
    [7]Morgenroth E,Sherden T,van Loosdrecht M C M,et al.Aerobic granular sludge in a sequencing batch reactor[J].Water Research,1997,31(12):3191-3194.
    [8]de Kreuk M K,van Loosdrecht M C.Selection of slow growing organisms as a means for improving aerobic granular sludge stability[J].Water Science and Technology,2004,49(11/12):9-17.
    [9]Rockt?schel T,Klarmann C,Ochoa J,et al.Influence of the granulation grade on the concentration of suspended solids in the effluent of a pilot scale sequencing batch reactor operated with aerobic granular sludge[J].Separation and Purification Technology,2015,142:234-241.
    [10]Rockt Schel T,Klarmann C,Helmreich B,et al.Comparison of two different anaerobic feeding strategies to establish a stable aerobic granulated sludge bed[J].Water Research,2013,47(17):6423-6431.
    [11]钱飞跃,王琰,王建芳,等.长期储存亚硝化颗粒污泥的活化及菌群结构变化[J].中国环境科学,2016,36(4):1052-1058.
    [12]Zheng Y,Yu H,Liu S,et al.Formation and instability of aerobic granules under high organic loading conditions[J].Chemosphere,2006,63(10):1791-1800.
    [13]Tay J H,Pan S,He Y X,et al.Effect of organic loading rate on aerobic granulation.I:Reactor performance[J].Journal of Environmental Engineering-Asce,2004,130(10):1094-1101.
    [14]张栋华,岳钦艳,王曙光,等.序批式反应器的好氧颗粒污泥特性研究[J].中国给水排水,2006,22(1):80-83.
    [15]梅子鲲.处理城市污水好氧颗粒污泥的培养与性能研究[D].合肥:安徽建筑工业学院,2010.
    [16]高景峰,陈冉妮,苏凯,等.同步脱氮除磷好氧颗粒污泥形成与反应机制的研究[J].环境科学,2010,31(4):1021-1029.
    [17]刘超.颗粒化条件下丝状菌颗粒形成过程研究[D].西安:西安建筑科技大学,2013.
    [18]倪丙杰.好氧颗粒污泥的培养过程、作用机制及数学模拟[D].合肥:中国科学技术大学,2009.
    [19]de Kreuk M K.Aerobic granular sludge scaling up a new technology[D].Delft,the Netherlands:Delft University of Technology,2006:Proefschrift Delft,Technische Universiteit.
    [20]Rocktaschel T,Klarmann C,Helmreich B,et al.Comparison of two different anaerobic feeding strategies to establish a stable aerobic granulated sludge bed[J].Water Research,2013,47(17):6423-6431.
    [21]刘丽,任婷婷,徐得潜,等.高强度好氧颗粒污泥的培养及特性研究[J].中国环境科学,2008,28(4):360-364.
    [22]GB 3838-2002地表水环境质量标准[S].
    [23]Liu Y,Tay J H.State of the art of biogranulation technology for wastewater treatment[J].Biotechnology Advances,2004,22(7):533-563.
    [24]高景峰,周建强,彭永臻.处理实际生活污水短程硝化好氧颗粒污泥的快速培养[J].环境科学学报,2007,(10):1604-1611.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700