剩余污泥机械破碎碳源快速释放与回收技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon Source Release and Recovery Rapidly from Excess Sludge by Mechanical Disintegration
  • 作者:王先宝 ; 亓雪菲 ; 费骄 ; 张安龙
  • 英文作者:WANG Xian-bao;QI Xue-fei;FEI Jiao;ZHANG An-long;School of Environmental Science and Engineering,Shaanxi University of Science and Technology;
  • 关键词:剩余污泥 ; 机械破碎 ; 碳源回收 ; 絮体结构
  • 英文关键词:excess sludge;;mechanical disintegration;;carbon source recovery;;floc structure
  • 中文刊名:GSPS
  • 英文刊名:China Water & Wastewater
  • 机构:陕西科技大学环境科学与工程学院;
  • 出版日期:2018-10-01
  • 出版单位:中国给水排水
  • 年:2018
  • 期:v.34;No.471
  • 基金:陕西省自然科学基础研究计划项目(2017JQ5097)
  • 语种:中文;
  • 页:GSPS201819004
  • 页数:6
  • CN:19
  • ISSN:12-1073/TU
  • 分类号:22-26+32
摘要
基于我国城市污水处理厂进水碳氮比低影响生物系统脱氮除磷效果的现状,针对传统污泥厌氧发酵产酸工艺周期长、效率低的问题,开展了剩余污泥机械破碎碳源快速释放与回收技术研究,考察了机械破碎强度与作用时间对污泥絮体结构与碳源释放的影响。结果表明,随着机械破碎强度的增加,溶解性COD的产量逐渐升高;而随着机械破碎作用时间的延长,溶解性COD的产量呈现先升高再缓慢降低的趋势,作用时间为8 min时,溶解性COD的产量达到最大,约910mg/L。激光粒度仪与环境扫描电镜分析结果显示,随着破碎强度与作用时间的增加,污泥絮体粒径逐渐变小,结构松散直至破碎,达到污泥破碎碳源释放的效果。当以产生的溶解性COD为碳源时活性污泥反硝化速率为2. 553 mgNO_3~--N/(gMLSS·h),略高于以葡萄糖为碳源时的脱氮速率。而经过机械作用后剩余污泥絮体破碎,脱氮性能基本丧失,其反硝化速率仅为0. 680 mgNO_3~--N/(gMLSS·h)。机械破碎作用可实现剩余污泥碳源的快速释放,为解决污水处理厂碳源不足与剩余污泥处置困难的问题提供了新的思路与途径。
        The problem of low carbon and nitrogen ratio in influent of wastewater treatment plants is common in China,which interferes with biological nitrogen and phosphorus removal. Based on the problem of long period and low efficiency of traditional sludge anaerobic fermentation,the study of carbon source release and recovery rapidly from excess sludge by mechanical disintegration was carried out. The effect of mechanical disintegration strength and time on the sludge flocs structure and carbon source release was analyzed. The results showed that soluble COD( SCOD) yield gradually increased with the increase of mechanical disintegration strength. However,with the extension of mechanical disintegration time,the SCOD yield increased first and then decreased slowly. When the mechanical disintegration time was 8 min,the yield of SCOD reached the peak,it was about 910 mg/L. The results of laser particle size analyzer and environmental scanning electron microscope showed that with the increase of mechanical disintegration strength and time,the sludge floc size gradually decreased,and the structure became loose until it was broken. Using SCOD produced from sludge as the carbon source,the denitrification rate of activated sludge was 2. 553 mg NO_3~--N/( gMLSS·h),which was slightly higher than the denitrification rate using glucose as the carbon source. After the mechanical disintegration,the sludge flocs were broken,and the denitrification performance was basically lost. The denitrification rate was only 0. 680 mgNO_3~--N/( g MLSS·h). The mechanical disintegration can realize the rapid release of carbon source in excess sludge,which provides a new idea and approach for solving the problem of insufficient carbon source and excess sludge disposal in the wastewater treatment plant.
引文
[1]张智,李柏林,相欣奕,等.处理低温低碳源城市污水的A/A/O氧化沟工艺脱氮运行工况优化[J].环境工程学报,2012,6(8):2565-2570.Zhang Zhi,Li Bolin,Xiang Xinyi,et al. Operation optimization of A/A/O oxidation ditch for nitrogen removal from low-temperature and low-carbon municipal sewage[J]. Chinese Journal of Environmental Engineering,2012,6(8):2565-2570(in Chinese).
    [2] Jin P L,Wang X B,Zhang Q H,et al. A new activated primary tank developed for recovering carbon source and its application[J]. Bioresour Technol,2018,200:722-730.
    [3] Lin Y M,Zhou S Q,Li F Z,et al. Utilization of municipal sewage sludge as additives for the production of ecocement[J]. J Hazard Mater,2012,213:457-465.
    [4]林奕明,方益民,许冠英.广东省污泥无害化处置情况及技术政策探讨[J].中国给水排水,2017,33(12):19-23.Lin Yiming,Fang Yimin,Xu Guanying. Current situation of harmless treatment and disposal of sewage sludge and discussion on relevant technical policies in Guangdong Province[J]. China Water&Wastewater,2017,33(12):19-23(in Chinese).
    [5]张娟.初始p H值对皂苷强化污泥生产短链挥发性脂肪酸的影响[J].环境工程学报,2017,11(1):336-340.Zhang Juan. Effect of initial p H on short chain fatty acid production from sludge anaerobic fermentation enhance by saponin[J]. Chinese Journal of Environmental Engineering,2017,11(1):336-340(in Chinese).
    [6] Yuan Y,Peng Y Z,Liu Y,et al. Change of p H during excess sludge fermentation under alkaline,acidic and neutral conditions[J]. Bioresour Technol,2014,174:1-5.
    [7] Maspolim Y,Zhou Y,Guo C H,et al. The effect of p H on solubilization of organic matter and microbial community structures in sludge fermentation[J]. Bioresour Technol,2015,190:289-298.
    [8]刘绍根,徐锐,胡星梅.污泥性质对污泥水解酸化效果的影响[J].环境工程学报,2015,9(2):572-578.Liu Shaogen,Xu Rui,Hu Xingmei. Effect of sludge property on sludge hydrolysis and acidification process[J]. Chinese Journal of Environmental Engineering,2015,9(2):572-578(in Chinese).
    [9]邢立群,彭永臻,金宝丹,等.盐度强化剩余污泥碱性发酵产酸[J].中国环境科学,2015,35(6):1771-1779.Xing Liqun,Peng Yongzhen,Jin Baodan,et al. Enhanced production of short-chain fatty acids from waste activated sludge alkaline fermentation:The effect of salinity[J]. China Environmental Science,2015,35(6):1771-1779(in Chinese).
    [10]刘充.预处理调解对剩余污泥发酵液微生物电解产氢影响研究[D].哈尔滨:哈尔滨工业大学,2016.Liu Chong. Effects of Pretreatment on Hydrogen Production in Microbial Electrolysis Using Waste Sludge Fermentative Liquid[D]. Harbin:Harbin Institute of Technology,2016(in Chinese).
    [11]郝晓地,蔡正清,甘一萍.剩余污泥预处理技术概览[J].环境科学学报,2011,31(1):1-12.Hao Xiaodi,Cai Zhengqing,Gan Yiping. Review of pretreatment technologies for excess sludge[J]. Acta Scientiae Circumstantiae,2011,31(1):1-12(in Chinese).
    [12] Yeneneh A M,Kayaalp A,Sen T K,et al. Effect of microwave and combined microwave-ultrasonic pretreatment on anaerobic digestion of mixed real sludge[J]. J Environ Chem Eng,2015,3:2514-2521.
    [13] Huang X F,Shen C M,Liu J,et al. Improved volatile fatty acid production during waste activated sludge anaerobic fermentation by different bio-surfactants[J]. Chem Eng J,2015,264:280-290.
    [14]张源凯,王洪臣,庄健.污泥预处理的几种新技术[J].水资源保护,2014,30(4):71-77.Zhang Yuankai,Wang Hongchen,Zhuang Jian. New technologies for sludge pretreatment[J]. Water Resource Protection,2014,30(4):71-77(in Chinese).
    [15]李秀芳.基于机械淘洗的活性初沉池碳源转化与回收评价[J].中国给水排水,2016,32(17):11-16.Li Xiufang. Assessment of carbon source conversion and recovery in activated primary tank with mechanical elutriation[J]. China Water&Wastewater,2016,32(17):11-16(in Chinese).
    [16]常青.活性污泥中保外聚合物的组成及功能分析[D].西安:西安建筑科技大学,2014.Chang Qing. Composition and Function of Extracellular Polymeric Substances in the Activated Sludge[D]. Xi’an:Xi’an University of Architecture and Technology,2014(in Chinese).
    [17]袁林江,周国标,南亚萍.微生物聚磷及其酶学调控[J].环境科学学报,2015,35(7):1955-1962.Yuan Linjiang,Zhou Guobiao,Nan Yaping. Review on microbial polyphosphate accumulation and its enzymological regulation[J]. Acta Scientiae Circumstantiae,2015,35(7):1955-1962(in Chinese).
    [18]王先宝.基于碳源有效利用与曝气模式调控的氧化沟强化脱氮技术研究[D].西安:西安建筑科技大学,2015.Wang Xianbao. The Study on Improvement of Nitrogen Removal in Oxidation Ditch by Optimization of Carbon Source Utilization and Aeration Mode[D]. Xi’an:Xi’an University of Architecture and Technology,2015(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700