苹果腐烂病病原—寄主互作机制及综合防控研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress in pathogen-host interaction mechanism and integrated control of apple valsa canker
  • 作者:左存武 ; 刘河 ; 吕前前 ; 陈佰鸿
  • 英文作者:ZUO Cunwu;LIU He;Lü Qianqian;CHEN Baihong;Department of Horticulture, Gansu Agricultural University;
  • 关键词:苹果 ; 腐烂病 ; 病原—寄主互作 ; 综合防控
  • 英文关键词:Apple;;Valsa canker;;Pathogen-host interaction;;Integrated control
  • 中文刊名:GSKK
  • 英文刊名:Journal of Fruit Science
  • 机构:甘肃农业大学园艺学院;
  • 出版日期:2018-12-27 14:57
  • 出版单位:果树学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(31860545,31501728);; 甘肃省科技重大专项(18ZD2NA006);; 甘肃高等学校科研项目(2018B-034);; 甘肃农业大学引进人才专项(GSAU-RCZX201712)
  • 语种:中文;
  • 页:GSKK201902013
  • 页数:10
  • CN:02
  • ISSN:41-1308/S
  • 分类号:114-123
摘要
腐烂病是我国乃至东亚苹果产业的重大真菌病害,其病原菌为黑腐皮壳菌(Valsa mali, Vm)。因其危害的严重性,国内外已在病原-寄主互作机制和综合防控等方面开展了深入系统的研究:鉴定了Vm致病因子如降解酶类物质(果胶酶和根皮苷降解酶等)、毒性次生代谢物(聚酮合成酶,PKS;非核糖体多肽合成酶,NRPS;PKS-NRPS杂合体;异香豆素类物质等)、分泌蛋白、转录因子等;在抗病方面,筛选出'三叶海棠’(Malus. sieboldii)'、德钦海棠’(M. sikkimi-mensis)和'平邑甜茶’(M. hupehesis)等抗病砧木资源和'红玉'’优金’和'小町’等抗性较强的品种,发现了参与抗病的信号分子包括几丁质、激素(如茉莉酸,JA;水杨酸,SA;脱落酸,ABA等)和R基因等;在病害防控方面,提倡将早期诊断与检测、抗病育种、果园管理、病斑处理和生物防治相结合的综合防控措施。笔者围绕以上几个方面的最新进展作一综述,为开展更深入的研究和有效防控提供参考。
        Valsa canker, caused by valsa mali(Vm), is the most destructive disease of apple productionin the Eastern Aisa. In China, this disease occurs in almost all apple-growing areas, and results in can-kers on branches, trunks and diebacks of twigs. Fungicidal applications are not always effective becausethe mycelium is able to extensively spread to the xylem. Vm is a necrotrophic fungi, usually invades tis-sues through the wound caused by pruning, frost damage, sunscalds, and other mechanical injuries.Most new lesions on the infected tissues appear in spring, rapidly expand between spring and early sum-mer, and then slowly spread during the middle and late summer and the whole winter. Recently, manystudies have focused on the pathogen-host interaction mechanism and integrated prevention and con-trols. Genome sequencing indicates that Vm has a large number of protein kinases, suggesting a verycomplex pathogenic regulation mechanism. To date, degradation enzymes, secondary metabolisms, ef-fecter proteins and several transcription factors have been confirmed, which correlated with pathogenici-ty of Vm. Compared with other pathogenic fungi, a great amount of genes involved in cell wall degrada-tion enzymes biosynthesis, secondary metabolisms and secretory proteins were found in Vm genome.Among these, genes involved in pectin and phlorizin degradation and encoding Polyketide Synthase(PKS) and Nonribosomal Peptide Synthetase(NRPS) play crucial roles in Vm pathogenicity. Some se-cretory proteins, such as the necrosis-inducing protein Nep1-like, the necrosis-inducing factor Hce2, theserine protease inhibitor I9 and the LysM domain-containing protein, participated in the pathogenic pro-cess. Besides, some transcription factors(TFs), including PacC and seb1, have been confirmed to playcrucial roles in the process of Vm infection. Lastly, a large number of membrane transporters, such asmultidrug resistant transporters(MFS superfamily) and siderophore-ion transporters(SITs), can helpVm overcome limitation of antifungal compounds and ion, indirectly contributing to Vm virulence. Toinvestigate molecular mechanism of apple trees against Vm infection, several types of resistant germ-plasm were screened, including rootstock species'Sanyehaitang'(M. sieboldii),'Deqinhaitang'(M.sikkimimensis),'Taishanhaitang'(M. hupehensis),'Pingyitiancha'(M. hupehensis),'Yajiangbianye-haitang'(M. toringoides),'Linzhihaitang','Lushihaitang'and'Kelegou Baccata LF(H)', and culti-vated varieties'Jonathan''Qinguan''Yuhuazaofu'and'Youjin'. To withstanding Vm infection, vari-ous resistant responses were wakened in apple, and these were mainly involved in chitin signals, hor-monal homeostasis, as well as resistant genes and TFs. RNAseq analysis showed that cell apoptosis,transcription regulation, IAA signal pathway, ATP-, DNA-and protein-binding activity were involved in'Fuji'resistance. Based on re-sequencing, three SNPs in an RNA-binding protein gene, a serine/threo-nine-protein kinase gene and a MYB transcription factor gene showed a close relationship to apple resis-tance. Although more than 1 800 resistant genes were discovered from apple genome, a few of thesewere differently expressed in'Fuji'responses to Vm signals. Additionally, polygalacturonase-inhibitingprotein, cytochrome P450 and phytoalexins synthetic genes might be involved in Vm resistance. Foliarnutrient analysis and fertilization experiments exhibited that increasing tree potassium(K) contents en-hanced resistance to Vm colonization. However, further investigation is needed to explain the molecularmechanism of K on apple resistance. Integrated control measure was recommended to effectively con-trol the occurrence of the disease, including rapid and effective detection systems, orchard management,resistant breeding, diseased lesion treatment and biological control. To effectively control the disease,the national apple industry system has established China Apple Pest Control Collaboration, which couldmonitor the occurrence of apple diseases and insect pests in time. simultaniously, several rapid and ef-fective detection methods have been established, like nested PCR and quantitative Real-time PCR as-say. Development of resistant cultivars is one of the most effective and durable practical approaches tocontrolling the disease. Establishment of efficient genome editing in apples provides a new approach toresistant breeding. Strengthening orchard management plays an important role in the prevention andcontrol of the Valsa canker, including strengthening the tree vigor, managing wound with antifungal andhealing drugs and house-cleaning the orchard in time. Diseased lesion should be clean removed and thewound should be painted with 2.12% copper humic acid and 3.315% thiophanate-methyl ? 1-naphtha-lene acetic acid. Besides, Wrist-bridging Rejuvenation, Phloem Graft Method and Mud Paste Methodcould effectively prevent the recurrence of Valsa canker. Biological control of fungal disease hasemerged as an effective practice. Various antifungal microorganisms, such as Trichoderma longibrachia-tum, Sphaeropsis spp., Streptomyces longissimus, Streptomyces aureus, and Bacillus amyloliquefaciens,and botanical fungicides such as Ozone Oil, Psoralea corylifolia Linn and Polyhydrooxy Dinaphthalde-hyde, have been confirmed, which could significantly inhibit the growth of Vm. With the rapid spread ofthe disease, Valsa canker of apple has become the focus in apple production and research. In the pastfew decades, through the continuous research and exploration by scientists in many apple-producingcountries, pathogen-host interaction mechanism and integrated control measures have been partly under-stood, some progress has been made in control of the disease and resistant breeding. At present, break-throughs in several aspects are urgently in need: 1) resistant breeding, 2) pathogen-host interaction in-vestigation and resistant gene screening, 3) development of environmentally friendly and efficient fungi-cides, 4) establishment of early detection systems for diseases. With the continuous exploration of scien-tific researches and the rapid development of molecular biology and bioinformatics, it is believed thatthe efficiently defeating valsa canker of apple will be around the corner.
引文
[1] CHEN C,DONG X L,LI B H,LIAN S,LIANG W X,WANGC X. Effects of temperature,humidity,and wound age on Valsamali infection of apple shoot pruning wounds[J]. Plant Disease,2016,100(12):2394-2401.
    [2] SUZAKI K. Population structure of Valsa ceratosperma,causalfungus of Valsa canker,in apple and pear orchards[J]. Journal ofGeneral Plant Pathology,2008,74(2):128.
    [3]曹克强,国立耘,李保华,孙广宇,陈汉杰.中国苹果树腐烂病发生和防治情况调查[J].植物保护,2009,35(2):114-117.CAO Keqiang,GUO Liyun,LI Baohua,SUN Guangyu,CHENHanjie. Investigations on the occurrence and control of applecanker in China[J]. Plant Protection,2009, 35(2):114-117.
    [4] WU Y X,XU L S,LIU J,YIN Z Y,GAO X N,FENG H,HUANG L L. A mitogen-activated protein kinase gene(VmPmk1)regulates virulence and cell wall degrading enzymeexpression in Valsa mali[J]. Microbial Pathogenesis,2017,111:298-306.
    [5] YIN Z Y,LIU H Q,LI Z,KE X W,DOU D L,GAO X N,LI ZF,SONG N,DAI Q Q,WU Y X,XU J R,KANG Z S,HUANGL L. Genome sequence of Valsa canker pathogens uncovers a po-tential adaptation of colonization of woody bark[J]. New Phytol-ogist,2015,208(4):1202-1216.
    [6] GAIROLA C,POWELL D. Extracellular enzymes and pathogen-esis by peach Cytosporas[J]. Journal of Phytopathology,2010,72(4):305-314.
    [7] NATSUME H,SETO H,OTAKE N. Studies on apple canker dis-ease. The necrotic toxins produced by Valsa ceratosperma[J].Journal of the Agricultural Chemical Society of Japan,1982,46(8):2101-2106.
    [8]王娟.青霉素对苹果树及腐烂病中根皮苷影响的研究[D].呼和浩特:内蒙古农业大学,2009.WANG Juan. Study on the effect of penicillin on the apple treeand phloridzin of apple tree canker[D]. Hohhot:Inner MongoliaAgricultural University,2009.
    [9] KE X W,HUANG L L,HAN Q Y,GAO X N,KANG Z S. His-tological and cytological investigations of the infection and colo-nization of apple bark by Valsa mali var. mali[J]. AustralasianPlant Pathology Application,2012,42(1):85-93.
    [10] KE X W,YIN Z Y,SONG N,DAI Q Q,VOEGELE R T,HUANG L L. Transcriptome profiling to identify genes in-volved in pathogenicity of Valsa mali,on apple tree[J]. FungalGenetics&Biology,2014,68(7):31-38.
    [11]许春景,孙迎超,吴玉星,冯浩,高小宁,黄丽丽.苹果树腐烂病菌果胶裂解酶基因Vmpl4的致病功能研究[J].果树学报,2017,34(1):19-25.XU Chunjing,SUN Yingchao,WU Yuxing,FENG Hao,GAOXiaoning,HUANG Lili. Study on the pathogenic function ofpectin lyase gene Vmpl4 of apple rot fungus[J]. Journal of FruitScience, 2017, 34(1):19-25.
    [12] XU M,GAO X N,CHEN J L,YIN Z Y,FENG H,HUANG LL. The feruloyl esterase genes are required for full pathogenicityof the apple tree canker pathogen Valsa mali[J]. Molecular PlantPathology,2018,19(6):1353-1363.
    [13] YU C L,LI T,SHI X P,SALEEM M,LI B H,LIANG W X,WANG C X. Deletion of Endo-β-1,4-Xylanase VmXyl1 Impactsthe virulence of Valsa mali in apple tree[J]. Frontiers in PlantScience,2018(9):663.
    [14]张江红,毛志泉,王丽琴,束怀瑞.根皮苷对平邑甜茶幼苗生理特性的影响[J].中国农业科学,2007,40(3):492-498.ZHANG Jianghong,MAO Zhiquan,WANG Liqin,SHUHuairui. Effect of phloridzin on physiological characteristics ofMalus hupehensis Rehd. seedlings[J]. Scientia Agricultura Sini-ca,2007,40(3):492-498.
    [15]王建华.苹果树腐烂病菌致病物质的初步研究[D].杨凌:西北农林科技大学,2012.WANG Jianhua. Studies on the pathogenic substances producedby Valsa mali[D]. Yangling:Northwest A&F University,2012.
    [16] WANG C X,LI C,LI B H,LI G F,DONG X L,WANG G P,ZHANG Q Q. Toxins produced by Valsa mali var. mali and theirrelationship with pathogenicity[J]. Toxins,2014,6(3):1139.
    [17]朱百涛,尹志远,吴玉星,高小宁,冯浩,韩青梅,黄丽丽.苹果树腐烂病菌根皮苷水解酶基因Vmlph1的功能[J].西北农业学报,2018,27(4):602-608.ZHU Baitao,YIN Zhiyuan,WU Yuxing,GAO Xiaoning,FENGHao,HAN Qingmei,HUANG Lili. Function of the root glyco-side hydrolase gene Vmlph1 of apple rot fungus[J]. NorthwestAgricultural Journal,2018,27(4):602-608.
    [18] OKUNO T,OIKAWA S,GOTO T,SAWAI K,SHIRAHAMAH,MATSUMOTO T. Structures and Phytotoxicity of Metabo-lites from Valsa ceratosperma[J]. Journal of the AgriculturalChemical Society of Japan,2006,50(4):997-1001.
    [19] STERGIOPOULOS I,WIT P J G M D. Fungal effector proteins[J]. Annual Review of Phytopathology,2009,47(1):233.
    [20] ZHANG M J,FENG H,ZHAO Y,SONG L,GAO C,XU X. Val-sa mali pathogenic effector VmPxE1 contributes to full viru-lence and interacts with the Host Peroxidase MdAPX1 as a po-tential target[J]. Frontiers in Microbiology,2018,9:821.
    [21] LI Z P,YIN Z Y,FAN Y Y,XU M,KANG Z S,HUANG L L.Candidate effector proteins of the necrotrophic apple cankerpathogen Valsa mali can suppress BAX-induced PCD[J]. Fron-tiers in Plant Science,2015,6:579.
    [22] WU Y X,YIN Z Y,XU L S,FENG H,HUANG L L. VmPacCis required for acidification and virulence in Valsa mali[J]. Fron-tiers in Microbiology,2018,9:1981.
    [23] WU Y X,XU L S,YIN Z Y,FENG H,HUANG L L. Transcrip-tion factor VmSeb1 is required for the growth,development,andvirulence in Valsa mali[J]. Microbial Pathogenesis,2018,123:132-138.
    [24] WU Y X,XU L S,YIN Z Y,DAI Q Q,GAO X N,FENG H. Twomembers of the velvet family,VmVeA and VmVelB,affect conidi-ation,virulence and pectinase expression in Valsa mali[J]. Mo-lecular Plant Pathology,2017,19(7):1639-1657.
    [25] SONG N,DAI Q Q,ZHU B T,WU Y X,XU M,VOEGELE RT. Gαproteins Gvm2 and Gvm3 regulate vegetative growth,asexual development,and pathogenicityon apple in Valsa mali[J]. PLoS One,2017,12(3):e0173141.
    [26] FENG H,XU M,LIU Y H,GAO X N,YIN Z Y,VOEGELE RT. The distinct roles of Argonaute protein 2 in the growth,stressresponses and pathogenicity of the apple tree canker pathogen[J]. Forest Pathology,2017,47(5):e12354.
    [27]贾晓曼,王怡霖,孙庚午,何邦令,葛顺峰,王玉涛,刘会香.苹果腐烂病菌VmHMG基因敲除突变体获得及表型分析[J].核农学报,2018,32(3):448-454.JIA Xiaoman,WANG Yilin,SUN Gengwu,HE Bangling,GEShunfeng,WANG Yutao,LIU Huixiang. Phenotypic analysis ofVmHMG gene knockout mutant of Apple rot fungus[J]. Journalof Nuclear Agriculture,2018,32(3):448-454.
    [28] JONES J D,DANGL J L. The plant immune system.[J]. Nature,2006,444(7117):323-329.
    [29] ABE K,KOTODA N,KATO H,SOEJIMA J. Resistance sourc-es to Valsa canker(Valsa ceratosperma)in a germplasm of di-verse Malus species[J]. Plant Breeding,2007,126(4):449-453.
    [30]刘欣颖,吕松,王忆,王昆,李天红,韩振海,张新忠.苹果种质资源对苹果树腐烂病抗性评价[J].果树学报,2011,28(5):843-848.LIU Xinying,LüSong,WANG Yi,WANG Kun,LI Tianhong,HAN Zhenhai,ZHANG Xinzhong. Evaluation of resistance ofMalus germplasms to apple canker(Valsa ceratosperma)[J].Journal of Fruit Science,2011,28(5):843-848.
    [31]肖遥,张新忠,王忆,吴婷,韩振海.八棱海棠בM9’杂交后代抗病及耐逆性遗传分析与优系筛选[J].果树学报,2015,32(5):815-823.XIAO Yao,ZHANG Xinzhong,WANG Yi,WU Ting,HANZhenhai. Segregation and primary selection of apple rootstockhybrids Malus micromalusבM9’for Valsa canker resistanceand abiotic stress tolerance[J]. Journal of Fruit Science,2015,32(5):815-823.
    [32]吴玉星,王昆,徐成楠,迟福梅,丛佩华,高源.苹果品种对苹果腐烂病的抗性鉴定[C]//全国落叶果树病虫害防治技术研讨会,2010.WU Yuxing,WANG Kun,XU Chengnan,CHI Fumei,CONGPeihua,GAO Yuan. Identification of apple varieties resistance toApple Canker[C]//National Symposium on Pest Control Tech-nology for Deciduous Fruit Trees, 2010.
    [33]桂腾茸,姬盼,孔宝华,张彦明,马玉梅,曹克强,马钧,黄文静,袁远,马学林.云南几个苹果新品种对腐烂病的抗性鉴定[J].华北农学报,2014,29(S1):57-61.GUI Tengrong,JI Pan,KONG Baohua,ZHANG Yanming,MAYumei,CAO Keqiang,MA Jun,HUANG Wenjing,YUAN Yuan,MA Xuelin. Identification of new apple cultivars resistant to can-ker disease in Yunnan[J]. Acta Agriculturae Boreali-Sinica,2014,29(S1):57-61.
    [34]殷辉,周建波,吕红,张志斌,秦楠,牛国飞,赵晓军. 36个苹果树品种对腐烂病菌的抗病性评价[J].山西农业科学,2017,45(6):998-1001.YIN Hui,ZHOU Jianbo,LüHong,ZHANG Zhibin,QIN Nan,NIU Guofei,ZHAO Xiaojun. Evaluation of disease resistance of36 apple tree varieties to rot fungi[J]. Journal of Shanxi Agricul-tural Sciences,2017,45(6):998-1001.
    [35] YIN Z Y,KE X W,KANG Z S,HUANG L L. Apple resistanceresponses against Valsa mali,revealed by transcriptomics analy-ses[J]. Physiological&Molecular Plant Pathology,2016,93:85-92.
    [36] FENG H,XU M,ZHENG X,ZHU T Y,GAO X N,HUANG LL. microRNAs and their targets in apple(Malus domestica cv.Fuji)involved in response to infection of pathogen Valsa mali[J]. Frontiers in Plant Science,2017,8:2081.
    [37] TAN Y, SHEN F, CHEN R T, WANG Y, WU T, LI T H, XU XF, HAN Z H, ZHANG X Z. Candidate genes associated with re-sistance to Valsa canker identified via quantitative trait loci inapple[J]. Journal of Phytopathology,2017,165(11):848-857.
    [38]左存武,张卫娜,毛娟,姜雪峰,马宗桓,苏静,陈佰鸿.苹果LysM类受体激酶基因家族鉴定与表达分析[J].园艺学报,2017,44(4):733-742.ZUO Cunwu,ZHANG Weina,MAO Juan,JIANG Xuefeng,MA Zonghuan,SU Jing,CHEN Baihong. Genome wide identifi-cation and expression analysis of LysM receptor-like kinase inapple[J]. Acta Horticulturae Sinica,2017,44(4):733-742.
    [39] ECKARDT N A. Chitin signaling in plants:insights into the per-ception of fungal pathogens and rhizobacterial symbionts[J].Plant Cell,2008,20(2):241-243.
    [40] GLAZEBROOK J. Contrasting mechanisms of defense againstbiotrophic and necrotrophic pathogens[J]. Annual Review ofPhytopathology,2005,43(1):205-227.
    [41] MENGISTE T. Plant immunity to necrotrophs[J]. Annual Re-view of Phytopathology,2012,50(1):267.
    [42] ZUO C W,MAO J,CHEN Z J,CHU M Y,DUO H,CHEN BH. RNA sequencing analysis provides new insights into dynam-ic molecular responses to Valsa mali pathogenicity in apple‘Changfu No. 2’[J]. Tree Genetics&Genomes,2018,14:75.
    [43] PIETERSE C M,VAN DER D D,ZAMIOUDIS C,LENO-REYES A,VAN WEES S C. Hormonal modulation of plant im-munity[J]. Annual Review of cell and Derelopmental Biology,2012,28(1):489-521.
    [44] MCDOWELL J M,WOFFENDE B J. Plant disease resistancegenes:recent insights and potential applications:trends in bio-technology[J]. Trends in Biotechnology,2003,21(4):178-183.
    [45] PENG H,WEI X Y,XIAO Y X,SUN Y,BIGGS A R,GLEA-SON M L. The relationship between severity of apple Valsa can-ker and leaf nutrition[C]//2015 Mycology Society of China An-nual Meeting,2015.
    [46] ZANG R,YIN Z S,KE X W,WANG X,LI Z L,KANG Z S,HUANG L L. A nested PCR assay for detecting Valsa mali var.mali in different tissues of apple trees[J]. Plant Disease,2012, 96(11):1645-1652.
    [47]祁兴华,郭永斌,常永旗,胡同乐,王亚南,王树桐,曹克强.苹果树腐烂病菌qPCR检测方法的建立[J].河北农业大学学报,2017,40(6):65-71.QI Xinghua,GUO Yongbin,CHANG Yongqi,HU Tongle,WANG Yanan,WANG Shutong,CAO Keqiang. A fluorescentreal-time quantitative PCR method for Valsa mali detection[J].Journal of Agricultural University of Hebei,2017,40(6):65-71.
    [48] YAO J L,COHEN D,ATKINSON R,RICHARDSON K,MOR-RIS B. Regeneration of transgenic plants from the commercialapple cultivar Royal Gala[J]. Plant Cell Reports,1995,14(7):407-12.
    [49]张志宏,景士西,王关林,方宏筠,吴禄平.新乔纳金苹果遗传转化及转基因植株再生[J].园艺学报,1997,24(4):67-69.ZHANG Zhihong,JING Shixi,WANG Guanlin,FANG Hong-jun,WU Luping. Genetic transformation of the commercial ap-ple cultivar new jonagold and regeneration of its transgenicplants[J]. Acta Horticulturae Sinica,1997,24(4):67-69.
    [50] CHIKAKO N,NARUMI H,SADAO K,MASATO W,KAZU-MA O,KEISHI O. Efficient genome editing in apple using aCRISPR/Cas9 system:[J]. Scientific Reports,2016,6:31481.
    [51] PENG H X,WEI X Y,XIAO Y X,SUN Y,SHANG S P,BIGGS A R,GLEASON M L,ZHU M Q,SUN G Y. Manage-ment of Valsa canker on apple with adjustments to potassium nu-trition[J]. Plant Disease,2015,100(5):884-889.
    [52]陈曲.苹果树腐烂病病斑扩展及分生孢子形成和释放规律研究[D].保定:河北农业大学,2011.CHEN Qu. Study on the spore formation and release pattern ofValsa ceratosperma,and the lesion expansion dynamics of appletree canker[D]. Baoding:Hebei Agricultural University,2011.
    [53]翟慧者,胡同乐,陈曲,曹克强. 10种化学杀菌剂对苹果树腐烂病的防效评价[J].植物保护,2012,38(3):151-154.ZHAI Huizhe,HU Tongle,CHEN Qu,CAO Keqiang. Controleffect of 10 fungicides against apple Valsa canker[J]. Plant Pro-tection,2012,38(3):151-154.
    [54] WANG S T,HU T L,WANG Y N,LUO Y,MICHAILIDES T J,CAO K Q. New understanding on infection processes of Valsacanker of apple in China[J]. European Journal of Plant Patholo-gy,2016,146(3):1-10.
    [55] MALONY M,VIOLA R,JUNG M H,KOO O J,KIM S,KIM JS. DNA-Free genetically edited grapevine and apple protoplastusing CRISPR/Cas9 ribonucleoproteins[J]. Frontiers in PlantScience,2016,7(e188):1904.
    [56]张萍,杨文娟,薛根生,王秀琴,王雨娜.不同药剂对香梨腐烂病的防治效果[J].北方果树,2016(6):7-9.ZHANG Ping,YANG Wenjuan,XUE Gensheng,WANG Xiu-qin,WANG Yuna. Comparison of control effects on Koler PearCanker using different fungicides[J]. Northern Fruits,2016(6):7-9.
    [57]袁军海,李田,陈利达,张红杰,王树桐,曹克强. 8种杀菌剂对苹果树腐烂病田间防效评价[J].河北北方学院学报(自然科学版),2017,33(11):60-63.YUAN Junhai,LI Tian,CHEN Lida,ZHANG Hongjie,WANGShutong,CAO Keqiang. Control effect of eight fungicides on ap-ple canker[J]. Journal of Hebei North University(Natural Sci-ence Edition),2017,33(11):60-63.
    [58]王磊,郜佐鹏,黄丽丽,韦洁玲,臧睿,康振生.防治苹果树腐烂病杀菌剂的室内筛选[J].植物病理学报,2009,39(5):101-106.WANG Lei,GAO Zuopeng,HUANG Lili,WEI Jieling,ZANGRui,KANG Zhensheng. Screening fungicide for pathogen inhi-bition and disease control of apple tree Valsa canker[J]. ActaPhytopathology Sinica,2009,39(5):101-106.
    [59]周建波,任璐,殷辉,秦楠,张志斌,赵晓军.苹果树腐烂病菌对甲基硫菌灵、苯醚甲环唑和嘧菌酯的敏感性及交互抗性[J].农药,2016,55(11):854-858.ZHOU Jianbo,REN Lu,YIN Hui,QIN Nan,ZHANG Zhibin,ZHAO Xiaojun. Sensitivity and cross-resistance to thiophana-methyl,azoxystrobin and difenoconazole in Valsa mali[J]. Agro-chemicals,2016,55(11):854-858.
    [60]庄霞.苹果树腐烂病原菌鉴定及无公害防治新技术的研究[D].呼和浩特:内蒙古农业大学,2008.ZHUANG Xia. Identification on the pathogen of Apple Cankerand control techniques of no-agricultural chemical residue[D].Hohhot:Inner Mongolia Agricultural University,2008.
    [61]肖云学.苹果树腐烂病发生影响因素及防治研究[D].杨凌:西北农林科技大学,2013.XIAO Yunxue. The influence factors and control techniques ofapple tree Valsa canker[D]. Yangling:Northwest A&F Univer-sity,2013.
    [62] YI H W,CHI Y J. Biocontrol of Cytospora canker of poplar innorth-east China with Trichoderma longibrachiatum[J]. ForestPathology,2011,41(4):299-307.
    [63] XIN Y F,SHANG J J. Bio-control trials of Chaetomium spirale,ND35 against apple canker[J]. Journal of Forestry Research,2005,16(2):121-124.
    [64] LIU X G,JIA J H,ATKINSON S,CCLMARA M,GAO K X,LIH,CAO J J. Biocontrol potential of an endophytic Serratia sp.G3and its mode of action[J]. World Journal of Microbiology&Biotechnology,2010,26(8):1465-1471.
    [65]孙伟. 101种植物提取物对两种植物病原菌生物活性的研究[D].北京:中国农业科学院,2011.SUN Wei. Research on biological activities of the extracts from101 kinds of plants against two kinds of plant pathogens[D].Beijing:Hebei Agricultural University,2011.
    [66]闫红豆.植物提取物对苹果主要病害的防治研究[D].保定:河北农业大学,2014.YAN Hongdou. Control effects of several plant extracts againstmajor diseases of apple[D]. Baoding:Hebei Agricultural Uni-versity,2014.
    [67] DAI P B,ZONG Z F,MA Q,WANG Y. Isolation,evaluationand identification of rhizosphere actinomycetes with potentialapplication for biocontrol of Valsa mali[J]. European Journal ofPlant Pathology,2018, 7:1-12.
    [68] ZHANG J X,GU Y B,CHI F M,JI Z R,WU J Y,DONG Q L,ZHOU Z S. Bacillus amyloliquefaciens,GB1 can effectivelycontrol apple valsa canker[J]. Biological Control,2015,88:1-7.
    [69] LI Z P,GAO X N,FAN D Y,YAN X,KANG Z S,HUANG LL. Saccharothrix yanglingensis Strain Hhs.015 Is a promisingbiocontrol agent on Apple Valsa Canker[J]. Plant Disease,2015,100(2):510-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700