幂指数型非线性浓度梯度芯片设计及性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Power exponential nonlinear concentration gradient chip design and performance analysis
  • 作者:姜云峰 ; 张思祥 ; 孟冀豫 ; 王哲 ; 李姗姗
  • 英文作者:JIANG Yunfeng;ZHANG Sixiang;MENG Jiyu;WANG Zhe;LI Shanshan;School of Mechanical Engineering,Hebei University of Technology;
  • 关键词:浓度梯度 ; 有限元法 ; 蛇形微通道 ; 多物理场耦合 ; 微流控芯片
  • 英文关键词:concentration gradient;;finite element;;snake-shaped microchannel;;multiple physical field coupling;;microfluidics chip
  • 中文刊名:HBGB
  • 英文刊名:Journal of Hebei University of Technology
  • 机构:河北工业大学机械工程学院;
  • 出版日期:2019-04-15
  • 出版单位:河北工业大学学报
  • 年:2019
  • 期:v.48;No.208
  • 基金:国家自然科学基金(51505123);; 河北省自然科学基金(E2015202194)
  • 语种:中文;
  • 页:HBGB201902004
  • 页数:9
  • CN:02
  • ISSN:13-1208/T
  • 分类号:28-36
摘要
微流体浓度梯度的生成与微通道结构及实验流体流量比例密切相关。本文通过对比传统与新型浓度梯度生成芯片的方法与特点,根据微流体的流动及传质扩散特性,采用被动混合原理设计了一种可在通道不同位置处生成不同浓度梯度的蛇形结构微通道芯片。建立了基于有限元的多物理场耦合模型,通过调整入口微流体流量比及扩散系数,得到流道内浓度分布结果,设计制作了带有蛇形微通道的PDMS微流控芯片并进行实验。两相流体分别选用去离子水和红色染料,实验流体在入口处总流量为10μL/min。通过分析微通道出口处流体浓度的分布规律,验证了该装置的可靠性。
        The generation of microfluids concentration gradient is closely related to the microchannel structure and the flow rate of the sample solutions. In this work, the methods and characteristics of traditional and new-type concentration gradient generation chips were contrastively analyzed. Then according to the characteristics of microfluids flow and mass transfer diffusion, a snake-shaped microchannel concentration gradient generation chip was designed based on passive mixing mechanism. This chip can generate discernable concentration gradients at different series of the microchannel.Multiple physical field coupling model based on the finite element was established, moreover. The concentration distribution in the channel was obtained by adjusting the microfluidic flow ratio and diffusion coefficient of the microfluids at the microchannel inputs.The microchannel with snake-shaped pattern fabricate with PDMS was designed and do experiments. The deionized water and red dye were selected as two streams microfluids respectively, the total flow at the entrance is 10 μL/min. The reliability of the device can be confirmed by analyzing the concentration distribution at the microchannel exit.
引文
[1] MORINI G L. Single-phase convective heat transfer in microchannels:a review of experimental results[J]. International Journal of Thermal Sciences,2004,43(7):631-651.
    [2] WHITESIDES G M. The origins and the future of microfluidics[J]. Nature,2006,442(7101):368-373.
    [3] HETSRONI G,MOSYAK A,POGREBNYAK E,et al. Fluid flow in micro-channels[J]. International Journal of Heat and Mass Transfer,2005,48(10):1982-1998.
    [4] HERWIG H,HAUSNER O. Critical view on“new results in micro-fluid mechanics”:an example[J]. International Journal of Heat and Mass Transfer,2003,46(5):935-937.
    [5] OBOT N T. Toward a better understanding of friction and heat/mass transfer in microchannels:a literature review[J]. Microscale Thermophysical Engineering,2002,6(3):155-173.
    [6] FOSSER K A,NUZZO R G. Fabrication of patterned multicomponent protein gradients and gradient arrays using microfluidic depletion[J]. Analytical Chemistry,2003,75(21):5775-5782.
    [7] von PHILIPSBORN A C,LANG S,BERNARD A,et al. Microcontact printing of axon guidance molecules for generation of graded patterns[J]. Nature Protocols,2006,1(3):1322-1328.
    [8] FREVERT C W,BOGGY G,KEENAN T M,et al. Measurement of cell migration in response to an evolving radial chemokine gradient triggered by a microvalve[J]. Lab on a Chip,2006,6(7):849-856.
    [9] ATENCIA J,MORROW J,LOCASCIO L E. The microfluidic palette:a diffusive gradient generator with spatio-temporal control[J]. Lab on a Chip,2009,9(18):2707-2714.
    [10] CHUNG B G,LIN F,JEON N L. A microfluidic multi-injector for gradient generation[J]. Lab on a Chip,2006,6(6):764-768.
    [11] JANG I,KIM G,SONG S. Mathematical model for mixing in a paper-based channel and applications to the generation of a concentration gradient[J].International Journal of Heat and Mass Transfer,2018,120:830-837.
    [12] OSBORN J L,LUTZ B,FU E,et al. Microfluidics without pumps:reinventing the T-sensor and H-filter in paper networks[J]. Lab on a Chip,2010,10(20):2659-2665.
    [13] SCHAUMBURG F,URTEAGA R,KLER P A,et al. Design keys for paper-based concentration gradient generators[J]. Journal of Chromatography A,2018,1561:83-91.
    [14] DELAMARCHE E,BERNARD A,SCHMID H,et al. Microfluidic networks for chemical patterning of substrates:design and application to bioassays[J]. Journal of the American Chemical Society,1998,120(3):500-508.
    [15] von PHILIPSBORN A C,LANG S,BERNARD A,et al. Microcontact printing of axon guidance molecules for generation of graded patterns[J]. Nature Protocols,2006,1(3):1322-1328.
    [16] BERNARD A,RENAULT J P,MICHEL B,et al. Microcontact printing of proteins[J]. Advanced Materials,2000,12(14):1067-1070.
    [17] QUIST A P,PAVLOVIC E,OSCARSSON S. Recent advances in microcontact printing[J]. Analytical and Bioanalytical Chemistry,2005,381(3):591-600.
    [18] FOSSER K A,NUZZO R G. Fabrication of patterned multicomponent protein gradients and gradient arrays using microfluidic depletion[J]. Analytical Chemistry,2003,75(21):5775-5782.
    [19] SUN M,BITHI S S,VANAPALLI S A. Microfluidic static droplet arrays with tuneable gradients in material composition[J]. Lab on a Chip,2011,11(23):3949.
    [20] CAI L F,ZHU Y,DU G S,et al. Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay[J]. Analytical Chemistry,2012,84(1):446-452.
    [21] FREVERT C W,BOGGY G,KEENAN T M,et al. Measurement of cell migration in response to an evolving radial chemokine gradient triggered by a microvalve[J]. Lab on a Chip,2006,6(7):849-856.
    [22] KIM D,LOKUTA M A,HUTTENLOCHER A,et al. Selective and tunable gradient device for cell culture and chemotaxis study[J]. Lab on a Chip,2009,9(12):1797-1800.
    [23] DIAO J P,YOUNG L,KIM S,et al. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis[J]. Lab Chip,2006,6(3):381-388.
    [24] DERTINGER S K W,CHIU D T,JEON N L,et al. Generation of gradients having complex shapes using microfluidic networks[J]. Analytical Chemistry,2001,73(6):1240-1246.
    [25] JAMBOVANE S,DUIN E C,KIM S K,et al. Determination of kinetic parameters,kmandkcat,with a single experiment on a chip[J]. Analytical Chemistry,2009,81(9):3239-3245.
    [26] TIRELLA A,MARANO M,VOZZI F,et al. A microfluidic gradient maker for toxicity testing of bupivacaine and lidocaine[J]. Toxicology in Vitro,2008,22(8):1957-1964.
    [27] Cooksey G A,Sip C G,Folch A. A multi-purpose microfluidic perfusion system with combinatorial choice of inputs,mixtures,gradient patterns,and flow rates[J],Lab on A Chip,2009,9(3):417-426.
    [28] COOKSEY G A,SIP C G,FOLCH A. A multi-purpose microfluidic perfusion system with combinatorial choice of inputs,mixtures,gradient patterns,and flow rates[J]. Lab Chip,2009,9(3):417-426.
    [29] GLAWDEL T,ELBUKEN C,LEE L E J,et al. Microfluidic system with integrated electroosmotic pumps,concentration gradient generator and fish cell line(RTgill-W1):towards water toxicity testing[J]. Lab on a Chip,2009,9(22):3243-3250.
    [30] LEE K,KIM C,AHN B,et al. Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators[J]. Lab Chip,2009,9(5):709-717.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700