红外波段水汽连续吸收研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Water Vapour Continuum in Infrared Spectral Regions
  • 作者:马宏亮 ; 孙明国 ; 吴义恒 ; 王振东 ; 曹振松
  • 英文作者:MA Hongliang;SUN Mingguo;WU Yiheng;WANG Zhendong;CAO Zhensong;School of Physics and Electrical Engineering,Anqing Normal University;Key Laboratory of Atmospheric Optics,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;
  • 关键词:红外光谱 ; 水汽 ; 连续吸收 ; 辐射平衡 ; 遥感探测
  • 英文关键词:infrared spectrum;;water vapour;;continuum;;radiation budget;;remote-sensing
  • 中文刊名:GDJY
  • 英文刊名:Journal of Atmospheric and Environmental Optics
  • 机构:安庆师范大学物理与电气工程学院;中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室;
  • 出版日期:2017-11-02 10:44
  • 出版单位:大气与环境光学学报
  • 年:2018
  • 期:v.13;No.74
  • 基金:国家自然科学基金,41805014;; 中国科学院青年创新促进会基金,2015264~~
  • 语种:中文;
  • 页:GDJY201805002
  • 页数:13
  • CN:05
  • ISSN:34-1298/O4
  • 分类号:26-38
摘要
水汽连续吸收广泛存在于红外波段,对于地球辐射平衡和遥感探测有着重要的意义.一般水汽连续吸收的研究大多处于中红外窗口区域,而在吸收谱带内和近红外窗口区域的研究较少.目前,水汽连续吸收的机理仍然是一个有争议的课题.简要阐述了现有理论及计算模型的发展历史和研究现状,介绍了几种实验测量方法的原理、优点与不足,并对水汽连续吸收的发展进行了展望.
        The infrared spectrum of water vapor is made up of strongly absorbing bands and many transparent windows between these bands. The water vapour continuum in these same spectral regions is of particular importance for the Earth's radiation budget and for remote sensing techniques that exploit these windows.Historically, most attention has focused on the mid-infrared atmospheric window, but there have been many fewer reports within bands and in the near-infrared spectral region. In addition, the causes of the continuum remain a subject of controversy. The history and recent developments of the causes of the continuum and calculation models were reviewed briefly. The advantages and disadvantages of several experimental methods were discussed. The possible future directions were given.
引文
[1]Clough S A,Iacono M J,Moncet J L.Line-byline calculations of atmospheric fluxes and cooling rates:Application to water vapor[J].Journal of Geophysical Research:Atmospheres,1992,97(D14):15761-15785.
    [2]Kilsby C G,Edwards D P,Saunders R W,et al.Water-vapour continuum absorption in the tropics:Aircraft measturements and model comparisons[J].Quarterly Journal of the Royal Meteorological Society,1992,118(506):715-748.
    [3]Shine K P,Ptashnik I V,Radel G.The water vapour continuum:Brief history and recent developments[J].Survey in Geophysics,2012,33(3-4):535-555.
    [4]Rothman L S,Gordon IE,Babikov Y,et al.The HITRAN2012 molecular spectroscopic database[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2013,130:4-50.
    [5]Shine K P,Campargue A,Mondelain D,et al.The water vapour continuum in near-infrared windows-Current understanding and prospects for its inclusion in spectroscopic databases[J].Journal of Molecular Spectroscopy,2016,327:193-208.
    [6]Viktorova A A,Zhevakin S A.Absorption of microradiowaves in air by the dimers of water vapor(Microradiowave absorption in air by water vapor dimers)[C]//AKADEMIIA NAUK SSSR,DOKLADY,1966,171:1061-1064.
    [7]Varanasi P,Chou S,Penner S S.Absorption coefficients for water vapor in the 600~1000 cm~(-1)region[J].Journal of Quantitative Spectroscopy and Radiative Transfer,1968,8(8):1537-1541.
    [8]Arefev V N,Dianov-Klokov V I.Attenuation of10.6μm radiation by water vapor and the role of(H_2O)_2 dimers[J].Optics and Spectroscopy,1977,42(5):488-492.
    [9]Vigasin A A.Water vapor continuous absorption in various mixtures:possible role of weakly bound complexes[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2000,84(1):25-40.
    [10]Ptashnik I V,Smith K M,Shine K P,et al.Laboratory measurements of water vapour continuum absorption in spectral region 50005600 cm-1:Evidence for water dimmers[J].Quarterly Journal of the Royal Meteorological Societ-y,2004,130(602):2391-2408.
    [11]Ptashnik I V,Shine K P,Vigasin A A.Water vapour self-continuum and water dimers.1.Analysis of recent work[J].Journal of Quantitative Spectroscopy&Radiative Transfer,2011(112):1286-1303.
    [12]Elsasser W M.Far infrared absorption of atmospheric water vapor[J].Astrophysical Journal,1938,87(5):497-507.
    [13]Clough S A,Kneizys F X,Davies R W.Line shape and the water vapor continuum[J].Atmospheric Research,1989,23(3):229-241.
    [14]Tipping R H,Ma Q.Theory of the water vapor continuum and validations[J].Atmospheric Research,1995,36(1-2):69-94.
    [15]Ma Q,Tipping R H,Leforestier C.Temperature dependences of mechanisms responsible for the water-vapor continuum absorption.I.Far wings of allowed lines[J].The Journal of Chemical Physics,2008,128(12):124313.
    [16]Bogdanova J V,Rodimova O B.Line shape in far wings and water vapor absorption in a broad temperature interval[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2010,111(15):2298-2307.
    [17]Baranov Y I,Lafferty W J.The water vapour self-and water-nitrogen continuum absorption in the 1000 and 2500 cm~(-1)atmospheric windows[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2012,370(1968):2578-2589.
    [18]Hettner G.Uber das iultrarote Absorptionsspektrum des Wasserdampfes[J].Annalen der Physik,1918,360(6):476-496.
    [19]Elsasser W M.Far infrared absorption of atmospheric water vapor[J].The Astrophysical Journal,1938,87:497.
    [20]Gebbie H A,Harding W R,Hilsum C,et al.Atmospheric transmission in the 1 to 14μm region[C].Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences,1951,206(1084):87-107.
    [21]Anthony R.Atmospheric absorption of solar infrared radiation[J],Physical Review,1952,85(4):674.
    [22]Cowling T G.The absorption of water vapour in the far infra-red[J].Reports on Progress in Physics,1942,9(1):29.
    [23]Strong J.Study of atmospheric absorption and emission in the infrared spectrum[J].Journal of the Franklin Institute,1941,232(1):1-22.
    [24]Roach W T,Goody R M.Absorption and emission in the atmospheric window from 770 to 1250cm~(-1)[J].Quarterly Journal of the Royal Meteorological Society,1958,84(362):319-333.
    [25]Bignell K,Saiedy F,Sheppard P A.On the atmospheric infrared continuum[J].Journal of the Optical Society of America,1963,53(4):466-479.
    [26]Fomin V V,Tvorogov S D.Formation of the far wings contour of spectral lines broadened by a foreign gas;analysis of exponential decrease of continuous absorption beyond the band head of the4.3μm band of CO_2[J].Applied Optics,1973,12(3):584-589.
    [27]Tvorogov S D,Nesmelova L I.Radiative processes in the band wings of atmospheric gases[J].Akademiia Nauk SSSR Fizika Atmosfery i Okeana,1977,12:627-633.
    [28]Burch D E,Gryvnak D A,Pembrook J D.Investigation of the absorption of infrared radiation by atmospheric gases[R].Philco-Ford Corp newport Beach CA Aeronutronic DIV,1970.
    [29]Gryvnak D A,Burch D E.Infrared Absorption by CO_2 and H_2O[R].Ford Aerospace and Communications Corp Newport Beach CA Aeronutronic DIV,1978.
    [30]Fano U.Pressure broadening as a prototype of relaxation[J].Physicai Review,1963,131(1):259.
    [31]Rosenkranz P W.Pressure broadening of rotational bands.I.A statistical theory[J].The Journal of Chemical Physics,1985,83(12):6139-6144.
    [32]Rosenkranz P W.Pressure broadening of rotational bands.II.Water vapor from 300 to 1100cm-1[J].The Journal of Chemical Physics,1987,87(1):163-170.
    [33]Ma Q,Tipping R H.A far wing line shape theory and its application to the water continuum absorption in the infrared region.I[J].The Journal of Chemical Physics,1991,95(9):6290-6301.
    [34]Ma Q,Tipping R H.A far wing line shape theory and its application to the foreign-broadened water continuum absorption.Ⅲ[J].The Journal of Chemical Physics,1992,97(2):818-828.
    [35]Ma Q,Tipping R H.The averaged density mar trix in the coordinate representation:application to the calculation of the far-wing line shapes for H_2O[J].The Journal of Chemical Physics,1999,111(13):5909-5921.
    [36]Ma Q,Tipping R H.The frequency detuning correction and the asymmetry of line shapes:the far wings of H_2OH_2O[J].The Journal of Chemical Physics,2002,110(10):4102-4115.
    [37]Cormier J G,Ciurylo R,Drummond J R.Cavity ringdown spectroscopy measurements of the infrared water vapor continuum[J].The Journal of Chemical Physics,2002,118(3):1030-1034.
    [38]Bogdanova J V,Rodimova O B.Line shape in far wings and water vapor absorption in a broad temperature interval[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2010,111(15):2298-2307.
    [39]Klimeshina T E,Rodimova O B.Temperature dependence of the water vapor continuum absorption in the 3~5μm spectral region[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2013,119:77-83.
    [40]Penner S S,Varanasi P.Spectral absorption coefficients in the pure rotation spectrum of water vapor[J].Journal of Quantitative Spectroscopy and Radiative Transfer,1967,7(4):687-690.
    [41]Varanasi P,Chou S,Penner S S.Absorption coefficients for water vapor in the 600~1000 cm~(-1)region[J],Journal of Quantitative Spectroscopy and Radiative Transfer,1968,8(8):1537-1541.
    [42]Bignell K J.The water-vapour infrared continuum[J].Quarterly Journal of the Royal Meteorological Society,1970,96(409):390-403.
    [43]Aref'ev V N,Dianov-Klokov V I,Radionov V F,et al.Laboratory measurements of attenuation of CO_2 laser radiation by pure water vapor[J].Optics and Spectroscopy,1975,39(5):560-561.
    [44]Aref'ev V N,Dianov-Klokov V I.Attenuation of10.6μm radiation by water vapor and the role of(H_2O)_2 dimers[J].Optics and Spectroscopy,1977,42:488-492.
    [45]Hinderling J,Sigrist M W,Kneubühl F K.Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14μm atmospheric window[J].Infrared Physics,1987,27(2):63-120.
    [46]Vaida V,Daniel J S,Kjaergaard H G,et al.Atmospheric absorption of near infrared and visible solar radiation by the hydrogen bonded water dimer[J].Quarterly Journal of the Royal Meteorological Society,2001,127(575):1627-1643.
    [47]Schofield D P,Kjaergaard H G.Calculated OHstretching and HOH-bending vibrational transitions in the water dimer[J].Physical Chemistry Chemical Physics,2003,5(15):3100-3105.
    [48]Kjaergaard H G,Garden A L,Chaban G M,et al.Calculation of vibrational transition frequencies and intensities in water dimer:comparison of different vibrational approaches[J].The Journal of Physical Chemistry A,2008,112(18):4324-4335.
    [49]Garden A L,Halonen L,Kjaergaard H G.Calculated band profiles of the OH-stretching transitions in water dimer[J].The Journal of Physical Chemistry A,2008,112(32):7439-7447.
    [50]Ptashnik I V,Smith K M,Shine K P,et al.Laboratory measurements of water vapour continuum absorption in spectral region 5000~5600cm-1:Evidence for water dimmers[J].Quarterly Journal of the Royal Meteorological Society,2004,130(602):2391-2408.
    [51]Paynter D J,Ptashnik I V,Shine K P,et al.Pure water vapor continuum measurements between 3100 and 4400 cm~(-1):Evidence for water dimer absorption in near atmospheric conditions[J].Geophysical Research Letters,2007,34(12):L12808.
    [52]Vigasin A A.On the spectroscopic manifestations of weakly bound complexes in rarefied gases[J].Chemical Physics Letters,1985,117(1):85-88.
    [53]Vigasin A A.Bound,metastable and free states of bimolecular complexes[J].Infrared Physics,1991,32:461-470.
    [54]Vigasin A A.Bimolecular absorption in atmospheric gases[J].Weakly Interacting Molecular Pairs:Uncon-ventional Absorbers of Radiation in the Atmosphere,2003,27:23-47.
    [55]Vigasin A A.On the possibility to quantify contributions from true bound and metastable pairs to infrared absorption in pressurised water vapour[J].Molecular Physics,2010,108(18):2309-2313.
    [56]Epifanov S Y,Vigasin A A.Subdivision of phase space for anisotropically interacting war ter molecules[J].Molecular Physics,1997,90(1):101-106.
    [57]Schenter G K,Kathmann S M,Garrett B C.Equilibrium constant for water dimerization:analysis of the partition function for a weakly bound system[J].The Journal of Physical Chemistry A,2002,106(8):1557-1566.
    [58]Lokshtanov S E,Ivanov S V,Vigasin A A.Statistical physics partitioning and classical trajectory analysis of the phase space in CO_2-Ar weakly interacting pairs[J].Journal of Molecular Structure,2005,742(1):31-36.
    [59]Kjaergaard H G,Robinson T W,Howard D L,et al.Complexes of importance to the absorption of solar radiation[J].The Journal of Physical Chemistry A,2003,107(49):10680-10686.
    [60]Baranov Y I,Lafferty W J,Ma Q,et al.Watervapor continuum absorption in the 800-1250 cm~(-1)spectral region at temperatures from 311 to 363K[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2008,109(12):2291-2302.
    [61]Ptashnik I V,McPheat R A,Shine K P,et al.Water vapor self-continuum absorption in nearinfrared windows derived from laboratory mear surements[J].Journal of Geophy'sical Research:Atmospheres,2011,116(D16):D16305.
    [62]Roberts R E,Selby J E A,Biberman L M.Infrared continuum absorption by atmospheric water vapor in the 8-12μm window[J].Applied Optics,1976,15(9):2085-2090.
    [63]Burch D E.Continuum absorption by atmospheric H_2O[C].Proceedings of SPIE,Atmospheric Transmission,1981,277:28-40.
    [64]Burch D E,Alt R L.Continuum Absorption by H_2O in the 700-1200 cm~(-1)and 2400-2800 cm~(-1)Windows[R].Ford Aerospace and Communications Corp Newport Beach CA Aeronutronic DIV,1984.
    [65]Burch D E.Absorption by H_2O in Narrow Windows between 3000 and 4200 cm~(-1)[R].Ford Aerospace and Communications Corp Newport Beach CA Aeronutronic DIV,1985.
    [66]Van Vleck J H,Huber D L.Absorption,emission,and linebreadths:A semihistorical perspective[J].Reviews of Modern Physics,1977,49(4):939.
    [67]Paynter D J,Ptashnik I V,Shine K P,et al.Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293 K and 351 K[J].Journal of Geophysical Research:Atmospheres,2009,114(D21):D21301.
    [68]Cormier J G,Hodges J T,Drummond J R.Infirared water vapor continuum absorption at atmospheric temperatures[J].The Journal of Chemical Physics,2005,122(11):114309.
    [69]Mlawer E J,Payne V H,Moncet J L,et al.Development and recent evaluation of the MT-CKD model of continuum absorption[J].Philosophical Transactions of the Royal Society A,2012,370(1968):2520-2556.
    [70]Ptashnik I V,Petrova T M,Ponomarev Y N,et ai.Near-infrared water vapour self-continuum at close to room temperature[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2013,120:23-35.
    [71]Rowe P M,Walden V P.Improved measurements of the foreign-broadened continuum of water vapor in the 6.3μm band at 30℃[J].Applied Optics,2009,48(7):1358-1365.
    [72]Green P D,Newman S M,Beeby R J,et al.Recent advances in measurement of the water vapour continuum in the far-infrared spectral region[J].Philosophical Transactions of the Royal Society A,2012,370(1968):2637-2655.
    [73]Baranov Y I.The continuum absorption in H_2O+N_2 mixtures in the 2000-3250 cm~(-1)spectral region at temperatures from 326 to 363 K[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2011,112(14):2281-2286.
    [74]Fulghum S F,Tilleman M M.Interferometric calorimeter for the measurement of water-vapor absorption[J].Journal of the Optical Society of America B,1991,8(12):2401-2413.
    [75]Thapa R,Rhonehouse D,Nguyen D,et al.MidIR supercontinuum generation in ultra-low loss,dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm[C].Proceedings of SPIE,2013,8898:889808.
    [76]Orphal J,et al.High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source[J].Optics Express,2008,18(23):19232-19243.
    [77]Ptashnik I V,McPheat R A,Shine K P,et al.Water vapour foreign-continuum absorption in nearinfrared windows from laboratory measurements[J].Philosophical Transactions of the Royal Society A,2012,370(1968):2557-2577.
    [78]Ptashnik I V,Petrova T M,Ponomarev Y N,et al.Water vapor continuum absorption in near-IR atmospheric windows[J].Atmospheric and Oceanic Optics,2015,28:115-120.
    [79]Morville J,Kassi S,Chenevier M,et al.Fast,lownoise,mode-by-mode,cavity-enhanced absorption spectroscopy by diode-laser self-locking[J].Applied Physics B:Lasers and Optics,2005,80(8):1027-1038.
    [80]Kerstel E R T,Iannone R Q,Chenevier M,et al.A water isotope(2H,170,and 180)spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications[J].Applied Physics B:Lasers and Optics,2006,85(2):397-406.
    [81]Bucholtz A.Rayleigh-scattering calculations for the terrestrial atmosphere[J].Applied Optics,1995,34(15):2765-2773.
    [82]Reichert L,Hernandez M D A,Burrows J P,et al.First CRDS-measurements of water vapour continuum in the 940 nm absorption band[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2007,105(2):303-311.
    [83]Mondelain D,Aradj A,Kassi S,et al.The water vapour self-continuum by CRDS at room temperature in the 1.6μm transparency window[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2013,130:381-391.
    [84]Aldener M,Brown S S,Stark H,et al.Near-IR absorption of water vapor:Pressure dependence of line strengths and an upper limit for continuum absorption[J].Journal of Molecular Spectroscopy,2005,232(2):223-230.
    [85]Mondelain D,Manigand S,Kassi S,et al.Temperature dependence of the water vapor selfcontinuum by cavity ring-down spectroscopy in the 1.6μm transparency window[J].Journal of Geophysical Research:Atmospheres,2014,119(9):5625-5639.
    [86]Wu Jihua,Sun Fengyi,Pu Dasheng,et al.Laser photo-acoustic detection and its application to continuous absorption measurement of water vapour[J].Chinese Journal of Lasers,1982,9(5):101(in Chinese).吴际华,孙凤仪,浦达生,等.激光光声探测技术及其在水气连续吸收测量中的应用[J].中国激光,1982,9(5):101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700