果实酸度调控的遗传、分子与系统生物学研究进展
详细信息    查看全文 | 推荐本文 |
  • 作者:乔梁 ; 曹明浩 ; 郑剑 ; 郑志亮
  • 关键词:果实酸度 ; 有机酸 ; 代谢 ; 基因表达 ; 系统生物学
  • 中文刊名:FRUI
  • 英文刊名:South China Fruits
  • 机构:西南大学柑桔研究所/国家柑桔工程技术研究中心植物营养信号转导与果实品质改进实验室;
  • 出版日期:2016-07-28 14:00
  • 出版单位:中国南方果树
  • 年:2016
  • 期:v.45
  • 基金:重庆市科委项目(cstc2012gg-yyjsB80004)资助
  • 语种:中文;
  • 页:FRUI201604047
  • 页数:7
  • CN:04
  • ISSN:50-1112/S
  • 分类号:163-168+173
摘要
果实有机酸(特别是柠檬酸和苹果酸)含量是决定甜度或糖酸比等风味品质的一个重要指标,因此,调节酸度提高果实品质一直是园艺领域的主要目标之一。果实内有机酸代谢与调控是一个极为复杂的过程,牵涉到合成、转运、贮存和降解,这些生物学过程均受到果实类型、基因型、果实发育、环境条件和栽培管理的综合影响。经过多年的遗传研究,一些与果实酸度连锁或相关的基因已经被克隆或鉴定,并且运用分子生物学手段在基因表达水平上解释了酸度调控机制,最近又引入系统生物学从系统水平上探测了柑桔和苹果果实酸度的基因调控网络,所有这些进展为最终应用分子遗传学手段改进果实糖酸品质提供了基础。
        
引文
[1]ETIENNE A,GéNARD M,LOBIT P,et al.What controls fleshy fruit acidity?A review of malate and citrate accumulation in fruit cells[J].Journal of Experimental Botany,2013,64(6):1451-1469
    [2]赵尊行,孙衍华,黄化成.山东苹果中可溶性糖、有机酸的研究[J].山东农业大学学报(自然科学版),1995,26(3):355-360
    [3]LAMIKANRA O,INYANG I D,LEONG S.Distribution and effect of grape maturity on organic acid content of red muscadine grapes[J].Journal of Agricultural and Food Chemistry,1995,43(12):3026-3028
    [4]CERCS M,SOLER G,IGLESIAS D J,et al.Global analysis of gene expression during development and ripening of citrus fruit flesh.A proposed mechanism for citric acid utilization[J].Plant Molecular Biology,2006,62(4-5):513-527
    [5]YAMAKI Y.Organic acids in the juice of citrus fruits[J].Journal of the Japanese Society for Horticultural Science(Japan),1989,58(3):587-594
    [6]顾建芹.暗柳橙及其突变体红暗柳橙果实发育过程中糖酸组分的变化[D].武汉:华中农业大学,2007
    [7]MORGAN M J,OSORIO S,GEHL B,et al.Metabolic engineering of tomato fruit organic acid content guided by biochemical analysis of an introgression line[J].Plant Physiology,2013,161(1):397-407
    [8]ZHANG J,WANG X,YU O,et al.Metabolic profiling of strawberry(Fragaria×ananassa Duch.)during fruit development and maturation[J].Journal of Experimental Botany,2011,62(3):1103-1118
    [9]ALBERTINI M-V,CARCOUET E,PAILLY O,et al.Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit[J].Journal of Agricultural and Food Chemistry,2006,54(21):8335-8339
    [10]OSORIO S,SCOSSA F,FERNIE A R.Molecular regulation of fruit ripening[J].Frontiers in Plant Science,2013,4(9):198
    [11]GAPPER N E,MCQUINN R P,GIOVANNONI J J.Molecular and genetic regulation of fruit ripening[J].Plant Molecular Biology,2013,82(6):575-591
    [12]RUFFNER H,POSSNER D,BREM S,et al.The physiological role of malic enzyme in grape ripening[J].Planta,1984,160(5):444-448
    [13]罗安才,杨晓红,邓英毅,等.柑桔果实发育过程中有机酸含量及相关代谢酶活性的变化[J].中国农业科学,2003,36(8):941-944
    [14]HUANG D,ZHAO Y,CAO M,et al.Integrated systems biology analysis of transcriptomes reveals candidate genes for acidity control in developing fruits of sweet orange(Citrus sinensis L.Osbeck)[J].Frontiers in Plant Science,2016,7:486
    [15]IWAGAKI I,KATO Y.Relationship between early fruit growth and harvest fruit quality in satsuma mandarin[J].Journal of the Japanese Society for Horticultural Science(Japan),1982,51(3):263-269
    [16]UTSUNOMIYA N,YAMADA H,KATAOKA I,et al.The effect of fruit temperatures on the maturation of Satsuma mandarin(Citrus unshiu Marc.)fruits[J].Journal of the Japanese Society for Horticultural Science(Japan),1982,51(2):135-141
    [17]沈德绪.柑桔遗传育种学[M].北京:科学出版社,1998
    [18]陈发兴,刘星辉,陈立松.果实有机酸代谢研究进展[J].果树学报,2006,22(5):526-531
    [19]CAMERON J W,SOOST R.Acidity and total soluble solids in citrus hybrids and advanced crosses invloving acidless orange and acidless pummelo[J].Journal of the American Society for Horticultural Science,1977,102:198-201
    [20]CANEL C,BAILEY-SERRES J N,ROOSE M L.In vitro[14C]citrate uptake by tonoplast vesicles of acidless Citrus juice cells[J].Journal of the American Society for Horticultural Science,1995,120(3):510-514
    [21]FANG D,FEDERICI C,ROOSE M.Development of molecular markers linked to a gene controlling fruit acidity in citrus[J].Genome,1997,40(6):841-849
    [22]ETIENNE C,MOING A,DIRLEWANGER E,et al.Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation:involvement in regulating peach fruit acidity[J].Physiologia Plantarum,2002,114(2):259-270
    [23]BOUDEHRI K,BENDAHMANE A,CARDINET G,et al.Phenotypic and fine genetic characterization of the D locus controlling fruit acidity in peach[J].BMC Plant Biology,2009,9(1):1-14
    [24]BAI Y,DOUGHERTY L,LI M,et al.A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple[J].Molecular Genetics and Genomics,2012,287(8):663-678
    [25]ZHANG Q,MA B,LI H,et al.Identification,characterization,and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple[J].BMC Genomics,2012,13(1):537
    [26]SAUVAGE C,SEGURA V,BAUCHET G,et al.Genome-wide association in tomato reveals 44candidate loci for fruit metabolic traits[J].Plant Physiology,2014,165(3):1120-1132
    [27]COHEN S,ITKIN M,YESELSON Y,et al.The PH gene determines fruit acidity and contributes to the evolution of sweet melons[J].Nature Communications,2014,5:4026
    [28]DENG W,LUO K,LI Z,et al.Overexpression of Citrus junos mitochondrial citrate synthase gene in Nicotiana benthamiana confers aluminum tolerance[J].Planta,2009,230(2):355-365
    [29]CANEL C,BAILEY-SERRES J N,ROOSE M L.Molecular characterization of the mitochondrial citrate synthase gene of an acidless pummelo(Citrus maxima)[J].Plant Molecular Biology,1996,31(1):143-147
    [30]SADKA A,DAHAN E,OR E,et al.Comparative analysis of mitochondrial citrate synthase gene structure,transcript level and enzymatic activity in acidless and acid-containing Citrus varieties[J].Functional Plant Biology,2001,28(5):383-390
    [31]王滕旭,李正国,杨迎伍,等.甜橙柠檬酸合酶基因的克隆及其表达分析[J].中国农学通报,2010,26(10):65-69
    [32]HAYASHI M,DE BELLIS L,ALPI A,et al.Cytosolic aconitase participates in the glyoxylate cycle in etiolated pumpkin cotyledons[J].Plant and Cell Physiology,1995,36(4):669-680
    [33]SADKA A,DAHAN E,COHEN L,et al.Aconitase activity and expression during the development of lemon fruit[J].Physiologia Plantarum,2000,108(3):255-262
    [34]DEGU A,HATEW B,NUNES-NESI A,et al.Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis[J].Planta,2011,234(3):501-513
    [35]TEROL J,SOLER G,TALON M,et al.The aconitate hydratase family fromCitrus[J].BMC Plant Biology,2010,10(1):222
    [36]NUNES-NESI A,ARAúJO W L,Obata T,et al.Regulation of the mitochondrial tricarboxylic acid cycle[J].Current Opinion in Plant Biology,2013,16(3):335-343
    [37]KATZ E,BOO K H,KIM H Y,et al.Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development[J].Journal of Experimental Botany,2011,62(15):5367-5384
    [38]LIU X,HU X M,JIN L F,et al.Identification and transcript analysis of two glutamate decarboxylase genes,CsGAD1 and CsGAD2,reveal the strong relationship between CsGAD1 and citrate utilization in citrus fruit[J].Molecular Biology Reports,2014,41(9):6253-6262
    [39]APRILE A,FEDERICI C,CLOSE T J,et al.Expression of the H+-ATPase AHA10 proton pump is associated with citric acid accumulation in lemon juice sac cells[J].Functional&Integrative Genomics,2011,11(4):551-563
    [40]SHIMADA T,NAKANO R,SHULAEV V,et al.Vacuolar citrate/H+symporter of citrus juice cells[J].Planta,2006,224(2):472-480
    [41]EMMERLICH V,LINKA N,REINHOLD T,et al.The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier[J].Proceedings of the National Academy of Sciences,2003,100(19):11122-11126
    [42]HURTH M A,SUH S J,KRETZSCHMAR T,et al.Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast[J].Plant Physiology,2005,137(3):901-910
    [43]De ANGELI A,BAETZ U,FRANCISCO R,et al.The vacuolar channel VvALMT9mediates malate and tartrate accumulation in berries of Vitis vinifera[J].Planta,2013,238(2):283-291
    [44]LI S J,YIN X R,XIE X L,et al.The Citrus transcription factor,CitERF13,regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump,CitVHA-c4[J].Scientific Reports,2016,6
    [45]HU D G,SUN C H,MA Q J,et al.MdMYB1regulates anthocyanins and malate accumulation by directly facilitating their transport into the vacuole in apples[J].Plant Physiology,2016,170(3):1315-1330
    [46]LI S-J,LIU X-J,XIE X-L,et al.CrMYB73,aPH-like gene,contributes to citric acid accumulation in citrus fruit[J].Scientia Horticulturae,2015,197:212-217
    [47]BAI Y,DOUGHERTY L,CHENG L,et al.A co-expression gene network associated with developmental regulation of apple fruit acidity[J].Molecular Genetics and Genomics,2015,290(4):1247-1263
    [48]BAI Y,DOUGHERTY L,CHENG L,et al.Uncovering co-expression gene network modules regulating fruit acidity in diverse apples[J].BMC Genomics,2015,16(1):612
    [49]BAXTER I R,YOUNG J C,ARMSTRONG G,et al.A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(7):2649-2654

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700