石油组分的拉曼位移特征统计分析Ⅱ:环烷烃和不饱和烃
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Statistical Characteristics of Raman Shift of Petroleum Components Ⅱ:Cycloparaffin and Unsaturated Hydrocarbon
  • 作者:陈勇 ; 刘唯一 ; 王鑫涛 ; 卓勤功 ; 王淼 ; 曹梦春 ; 周振柱 ; 陈小兰
  • 英文作者:CHEN Yong;LIU Wei-yi;WANG Xin-tao;ZHUO Qin-gong;WANG Miao;CAO Meng-chun;ZHOU Zhen-zhu;CHEN Xiao-lan;School of Geosciences,China University of Petroleum;Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology;PetroChina Exploration and Development Institute;College of Earth Science and Engineering,Shandong University of Science and Technology;
  • 关键词:环烷烃 ; 不饱和烃 ; 拉曼位移 ; 烃类包裹体 ; 石油组分
  • 英文关键词:Cycloalkane;;Unsaturated hydrocarbon;;Raman shift;;Hydrocarbon inclusion;;Petroleum component
  • 中文刊名:GUAN
  • 英文刊名:Spectroscopy and Spectral Analysis
  • 机构:中国石油大学(华东)地球科学与技术学院;海洋国家实验室海洋矿产资源评价与探测技术功能实验室;中国石油勘探开发研究院;山东科技大学地球科学与工程学院;
  • 出版日期:2017-11-15
  • 出版单位:光谱学与光谱分析
  • 年:2017
  • 期:v.37
  • 基金:国家自然科学基金项目(41172111);; 中央高校基本科研业务费专项资金项目(SD2013211151,16CX05005A);; 山东省高等学校科技计划项目(J15LH05);; 国家油气重大专项(2016ZX05003-002);; 山东省重点研发计划2017年(第二批)(2017CXGC1602,2017CXGC1608)资助
  • 语种:中文;
  • 页:GUAN201711029
  • 页数:11
  • CN:11
  • ISSN:11-2200/O4
  • 分类号:134-144
摘要
了解不同类型烃类的拉曼光谱特征有助于更好地利用拉曼光谱技术分析烃类包裹体。主要统计和分析了环烷烃和不饱和烃的典型拉曼位移特征。结果显示,环戊烷和环己烷C—C键最强拉曼峰主要集中在1 440~1 460cm~(-1)之间,而通过环戊烷和环己烷分别在890和785cm~(-1)的稳定特征峰可以进行区分。环戊烷随着支链数的增加,其C—C键最强拉曼峰的波数增大至1 460cm~(-1)。含一个支链的五元环烷烃C—C键最强拉曼峰位于1 445cm~(-1),含两个支链的五元环烷烃C—C键最强拉曼峰为1 450cm~(-1),含三个及以上支链的五元环烷烃C—C键最强拉曼峰为1 460cm~(-1)。环己烷随着支链数增加C—H键最强拉曼峰发生红移,C—C键最强拉曼峰主要分布在1 440~1 460cm~(-1)范围内。含一个支链的环己烷最强拉曼峰组合特征明显,分布在1 445cm~(-1)±,1 034cm~(-1)±,2 853cm~(-1)±和2 934cm~(-1)±,含两个支链的环己烷C—C键分布在1 440~1 460cm~(-1),C—H键的最强拉曼峰为2 926cm~(-1)±,含三个支链的环己烷具有1 459cm~(-1)±和2 924cm~(-1)±的最强拉曼峰组合。烯烃碳碳双键的特征峰为1 641cm~(-1)±。炔烃特征峰在2 200cm~(-1)±,而1 445cm~(-1)±,2 908cm~(-1)±和2 933cm~(-1)±三个强峰可作为辅助识别标志。这些特征可以用于识别烃类包裹体中的环烷烃和不饱和烃。
        Understanding the Raman spectra of different types of hydrocarbons is fundamental for analyzing hydrocarbon inclusions with Raman spectroscopy.In this paper,statistics and analysis were done for the Raman characteristics of cycloalkanes and unsaturated hydrocarbons.According to the statistical results,some important conclusions can be drawn.The strongest Raman peak of C—C bond of cyclopentane and cyclohexane mainly concentrated in 1 440~1 460 cm~(-1).But cyclopentane and cyclohexane can be distinguished by the stable characteristic peak at 890 and 785 cm~(-1) in the Raman spectrogra.With the increasing of the number of branch chain of cyclopentane,the wave number of the strongest Raman peak of C—C bond will also increase,and reach to 1 460 cm~(-1).The strongest Raman peak of C—C bond cyclopentane appears at 1 445,1 450 and 1 460 cm~(-1) corresponding to one,two and three or more than three branch chains respectively.The strongest Raman peak of C—C bond cyclopentane containing four chains is constant at 1 460 cm~(-1).With the increasing of the number of branch chain of cyclohexane,the wave number of the strongest Raman peak of C—H bond will decrease.The strongest Raman peak of C—C bond is mainly distributed in the range of 1 440~1 460 cm~(-1).Cyclohexane containing one branch chain which can be identified by stable Raman band at1 445 cm~(-1)±,1 034 cm~(-1)±and 2 853 cm~(-1)±,2 934 cm~(-1)±.The combination of strongest Raman peaks at 1 440~1 460 and2 926 cm~(-1) are the evidence of the cyclohexane containingtwo branch chains,while the strongest Raman peaks of 1 459 cm~(-1)±and 2 924 cm~(-1)± are the evidence of the cyclohexane containingthreebranchchains.The CC bondsofalkenecanbeidenti fiedby1641 cm~(-1)±,and the C帒 C bonds of alkyne can be identified by 1 445 cm~(-1)±,2 908 cm~(-1)±and 2 933 cm~(-1)±.All these typical Raman bands can be used to identify cycloalkanes and alkynes.
引文
[1]Levorsen A L.Petroleum Geology(石油地质学).Thanslated by ZHOU Jia-hang,ZHANG Geng(周家珩,张更,译).Beijing:Geological Publishing House(北京:地质出版社),1975.15.
    [2]ZHANG Nai,TIAN Zuo-ji,MAO Guang-jian,et al(张鼐,田作基,毛光剑,等).Geochimica(地球化学),2009,38(2):174.
    [3]ZHANG Nai,WANG Zhao-ming,JU Feng-ping,et al(张鼐,王招明,鞠凤萍,等).Acta Petrolei Sinica(石油学报),2013,34(2):225.
    [4]LIU De-han,XIAO Xian-ming,TIAN Hui,et al(刘德汉,肖贤明,田辉,等).Petroleum Exploration and Development(石油勘探开发),2009,36(3):375.
    [5]FANG Chen-chen,XIONG Yong-qiang,LI Yun,et al(方忱琛,熊永强,李芸).Geochimica(地球化学),2015,44(2):196.
    [6]Qin Z,Xianming X,Lei P,et al.International Journal of Coal Geology,2014,121:19.
    [7]Jehliˇcka J,Beny C.Journal of Molecular Structure,1999,480-481:541.
    [8]Jehliˇcka J,Urban O,Pokorny J.Spectrochimica Acta Part A,2003,59:2341.
    [9]Court R W,Sephton M A,Parnell J,et al.Geochimica et Cosmochimica Acta,2007,71:2547.
    [10]LIU Guang-di,ZHANG Hou-fu,GAO Xian-zhi,et al(柳广弟,张厚福,高先志,等).Petroleum Geology(石油地质学).Beijing:Petroleum Industry Press(北京:石油工业出版社),2009.18.
    [11]Bruno J Z,Wilhoit R C,Dickson C H,et al.Selected Raman spectral data.Supplementary Vol.No.D-23of the TRC-API44Hydrocarbon Project Publication,1978.
    [12]CHEN Yong,LIU Wei-yi,WANG Xin-tao(陈勇,刘唯一,王鑫涛).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2016,36(8):2510.
    [13]HU Guo-yi,LUO Xia,LI Zhi-sheng,et al(胡国艺,罗霞,李志生).Scientia Sinica(Terrae)(中国科学:地球科学),2010,40(4):426.
    [14]Mango F D.Geochimica et Cosmochimica Acta,2000,64(7):1265.
    [15]ZHANG Nai,SONG Fu-qing,WANG Hui-tong(张鼐,宋孚庆,王汇彤).Bulletin of Mineralogy,Petrology and Geochemistry(矿物岩石地球化学通报),2006,1:33.
    [16]ZHANG Nai,TIAN Zuo-ji,LENG Ying-ying,et al(张鼐,田作基,冷莹莹,等).Science in China Press(D:Earth Science)(中国科学·D辑:地球科学),2007,07:900.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700