石墨烯超表面光学性质研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Advances of the Properties of Graphene Metasurfaces
  • 作者:袁悦 ; 赵萌萌 ; 高凤伟 ; 鲁白 ; 周胜
  • 英文作者:Yuan Yue;Zhao Mengmeng;Gao Fengwei;Lu Bai;Zhou Sheng;Harbin Normal University;
  • 关键词:石墨烯超表面 ; 电磁特性 ; 吸收 ; 反射 ; 透射
  • 英文关键词:Graphene metasurfaces;;Electromagnetic characteristics;;Absorption;;Reflection;;Transmission
  • 中文刊名:HEBY
  • 英文刊名:Natural Science Journal of Harbin Normal University
  • 机构:哈尔滨师范大学;
  • 出版日期:2019-02-15
  • 出版单位:哈尔滨师范大学自然科学学报
  • 年:2019
  • 期:v.35
  • 基金:哈尔滨师范大学硕士研究生创新项目(HSDSSCX2018-77,HSDSSCX2018-79);哈尔滨师范大学深化教育教学综合改革项目(X-2015-1-006,X-2015-2-001)
  • 语种:中文;
  • 页:HEBY201901010
  • 页数:5
  • CN:01
  • ISSN:23-1190/N
  • 分类号:55-59
摘要
超表面是具有亚波长尺度周期性人造结构的一种二维超材料,通过结构设计,对入射电磁波进行控制,在各类器件上有非常广泛的应用前景.石墨烯具有独特的电学、光学、热学和机械特性,石墨烯超表面受到了越来越多的关注.利用外部电压改变石墨烯的电导率可以灵活地设计出不同功能的器件.介绍了超表面的基本概念,根据超表面的分类简述了各类石墨烯超表面的发展进程,并对目前问题和未来发展趋势进行了讨论.
        The metasurfaces is a kind of two-dimensional metamaterials with subwavelength scale periodic artificial structure. It can control the incident electromagnetic wave through the structure design. It has a very wide application prospect in various kinds of devices. Graphene has unique electrical, optical, thermal and mechanical properties. More and more attention has been paid to the graphene metasurfaces. The devices with different functions can be designed flexibly and changing the conductivity of graphene and the external voltage. In this paper, the basic concept of metasurfaces is introduced, the development process of various graphene metasurfaces is briefly described according to the classification of metasurfaces, and the problems to be faced and the development trend in the future are discussed.
引文
[1] Sean P, Rodrigues S F,Lan L,et al.Intensity-dependent modulation of optically active signals in a chiral metamaterial[J].Nat Commun,2017,8(10):14602-14610.
    [2] VESELAGO V G. The electrodynamics of substances with simultaneously negative Values of ε and μ [J].Sov Phy Usp,1968,109(4):509-514.
    [3] Hao J, Wang J, Liu X, et al. High performance optical absorber based on a plasmonic metamaterial[J]. Applied Physics Letters, 2010, 96(25):4184-4187.
    [4] Geim A K, Novoselov K S . The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
    [5] Novoselov, K. S . Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306(5696):666-669.
    [6] Bao A,Loh K P.Graphene photonics,plasmonics and broadband optoelectronic devices[J]. ACS,2012(6):3677-3694
    [7] Bao Q, Zhang H, Wang B, et al. Broadband graphene polarizer[J]. Nature photonics, 2011, 5(7):411-415.
    [8] Rahmanzadeh M, Rajabalipanah H, Abdolali A . Analytical Investigation of Ultrabroadband Plasma-Graphene Radar Absorbing Structures[J]. IEEE Transactions on Plasma Science, 2017,2700724(99):1-10.
    [9] Alaee R, Farhat M, Rockstuhl C, et al. A perfect absorber made of a graphene micro-ribbon metamaterial[J]. Optics Express, 2012, 20(27):28017-28024.
    [10] ChenandA Alù PY. Atomically thin surface cloak using graphene[J]. ACS Nano,2011(5):5855-5863.
    [11] Mahdi R, Hamid R, Ali A . Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers[J]. Applied Optics, 2018, 57(4):959-968.
    [12] Ye L F, Chen X,et al. Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces[J]. Nano materials, 2018(8):562-573.
    [13] Chen X, Huang L, Mühlenbernd, Holger, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012(3):1198-1205.
    [14] Ni X, Kildishev A V, Shalaev V M . Metasurface holograms for visible light[J]. Nature Communications, 2013(4):2807-2812.
    [15] Lin D, Fan P, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194):298-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700