鸡营养应激中SIRT1基因对肝脏脂类代谢的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Sirt1 on Hepatocyte Lipid Metabolism Under Nutritional Stress in Chicken
  • 作者:郁建锋 ; 王中亮 ; 张燕萍 ; 胡悦 ; 徐璐 ; 龚道清 ; 顾志良
  • 英文作者:YU Jian-Feng;WANG Zhong-Liang;ZHANG Yan-ping;HU Yue;XU Lu;GONG Dao-qing;GU Zhi-liang;
  • 关键词:SIRT1 ; ; 肝脏 ; 脂类代谢 ; ATGL
  • 中文刊名:ZGXM
  • 英文刊名:Chinese Journal of Animal Science
  • 机构:扬州大学动物科学与技术学院;常熟理工学院生物与食品工程学院;
  • 出版日期:2019-05-10
  • 出版单位:中国畜牧杂志
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金(31472091);; 江苏省自然科学基金(BK20151257);; 苏州市科技计划项目(SYN201516)
  • 语种:中文;
  • 页:ZGXM201905019
  • 页数:5
  • CN:05
  • ISSN:11-2083/S
  • 分类号:94-98
摘要
本研究旨在探讨SIRT1基因在鸡肝脏脂类代谢中的功能。采用荧光定量PCR和免疫印迹检测34日龄广西三黄鸡在禁食24 h之后肝内SIRT1及其他糖脂代谢相关基因的表达水平,并测定血糖、血脂变化;检测SIRT1低表达的LMH-gSmiR30细胞系在葡萄糖和棕榈酸处理后细胞内糖脂代谢相关基因的表达水平及胞内脂滴的形成。结果表明:禁食24 h后,血液中甘油三酯浓度显著降低,肝内SIRT1基因的mRNA和蛋白水平显著增加,PGC-Lα、PPARα和ATGL基因表达也显著增加,但FASN基因表达则显著下降;禁食24 h后恢复2h采食,血糖和血液中甘油三酯浓度迅速回升,而肝内SIRT1、PGC-Lα、PPARα和ATGL基因的mRNA水平迅速降至正常喂饲组水平,FASN基因的mRNA水平则回升至对照组的25%;ATGL在SIRT1基因低表达的LMH-gSmiR30细胞中的mRNA表达水平略低于对照组细胞LMH-pmirG中的表达,而高浓度的葡萄糖和棕榈酸对LMH-gSmiR30细胞中ATGL的mRNA表达抑制更为明显,而且细胞内脂滴显著增多。以上结果说明,鸡肝脏中SIRT1基因的表达受营养状态的调控,同时SIRT1基因影响着肝细胞内脂类代谢过程。
        
引文
[1]Landry J,Sutton A,Tafrov S T,et al.The silencing protein SIR2and its homologs are NAD-dependent protein deacetylases[J].Proc Natl Acad Sci U S A,2000,97(11):5807-5811.
    [2]Greiss S,Gartner A.Sirtuin/Sir2 phylogeny,evolutionary considerations and structural conservation[J].Mol Cells,2009,28(5):407-415.
    [3]Bordone L,Guarente L.Calorie restriction,SIRT1 and metabolism:understanding longevity[J].Nat Rev Mol Cell Biol,2005,6(4):298-305.
    [4]Haigis M C,Guarente L P.Mammalian sirtuins--emerging roles in physiology,aging,and calorie restriction[J].Genes Dev,2006,20(21):2913-2921.
    [5]Cohen H Y,Miller C,Bitterman K J,et al.Calorie restriction promotes mammalian cell survival by inducing the SIRT1deacetylase[J].Science,2004,305(5682):390-392.
    [6]Yeung F,Hoberg J E,Ramsey C S,et al.Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1deacetylase[J].EMBO J,2004,23(12):2369-2380.
    [7]Jian C,Zou C,Xu N,et al.SIRT1 protects neural stem cells from apoptosis by decreasing acetylation of histone 3K9[J].Stem Cells Cloning,2018,11:39-41.
    [8]Ponugoti B,Kim D H,Xiao Z,et al.SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism[J].J Biol Chem,2010,285(44):33959-33970.
    [9]Andrade J M,Paraiso A F,de Oliveira M V,et al.Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation[J].Nutrition,2014,30(7-8):915-919.
    [10]Gariani K,Menzies K J,Ryu D,et al.Eliciting the mitoch-ondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice[J].Hepatology,201663(4):1190-1204.
    [11]Dominy J E Jr,Lee Y,Gerhart-Hines Z,et al.Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of SIRT1/GCN5[J].Biochim Biophys Acta,2010,1804(8):1676-1683.
    [12]Corona J C,Duchen M R.PPARgamma and PGC-1alpha as therapeutic targets in Parkinson's[J].Neurochem Res,2015,40(2):308-316.
    [13]Wu H,Deng X,Shi Y,et al.PGC-1alpha,glucose metabolism and type 2 diabetes mellitus[J].J Endocrinol,2016,229(3):R99-R115.
    [14]Puigserver P,Rhee J,Donovan J,et al.Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction[J].Nature,2003,423(6939):550-555.
    [15]Rodgers J T,Puigserver P.Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1[J].Proc Natl Acad Sci U S A,2007,104(31):12861-12866.
    [16]Purushotham A,Schug T T,Xu Q,et al.Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation[J].Cell Metab,2009,9(4):327-338.
    [17]Griffin H D,Guo K,Windsor D,et al.Adipose tissue lipo-genesis and fat deposition in leaner broiler chickens[J].J Nutr,1992,122(2):363-368.
    [18]Muoio D M,Newgard C B.Obesity-related derangements in metabolic regulation[J].Annu Rev Biochem,2006,75:367-401.
    [19]van den Berghe G.The role of the liver in metabolic homeo-stasis:implications for inborn errors of metabolism[J].J Inherit Metab Dis,1991,14(4):407-420.
    [20]Liu Y,Dentin R,Chen D,et al.A fasting inducible switch modulates gluconeogenesis via activator/coactivator excha-nge[J].Nature,2008,456(7219):269-273.
    [21]Rodgers J T,Lerin C,Haas W,et al.Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1[J].Nature,2005,434(7029):113-118.
    [22]Haemmerle G,Moustafa T,Woelkart G,et al.ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1[J].Nat Med,2011,17(9):1076-1085.
    [23]Sathyanarayan A,Mashek M T,Mashek D G.ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism[J].Cell Rep,2017,19(1):1-9.
    [24]Golej D L,Askari B,Kramer F,et al.Long-chain acyl-CoAsynthetase 4 modulates prostaglandin E(2)release from human arterial smooth muscle cells[J].J Lipid Res,2011,52(4):782-793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700