应对机动目标的全捷联导弹制导控制一体化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:IGC Design for Missile with Strapdown Seeker Against Maneuvering Target
  • 作者:赵斌 ; 朱传祥 ; 徐思勇 ; 蒋瑞民 ; 张琳 ; 周军
  • 英文作者:ZHAO Bin;ZHU Chuan-xiang;XU Si-yong;JIANG Rui-min;ZHANG Lin;ZHOU Jun;Institute of Precision Guidance and Control, Northwestern Polytechnical University;School of Mechanical Engineering, Northwestern Polytechnical University;Capital Aerospace Machinery Company, China Academy of Launch Vehicle Technology;
  • 关键词:状态约束 ; 干扰观测器 ; 制导控制一体化 ; 全捷联
  • 英文关键词:State constraint;;Disturbance observer;;Integrated guidance and control;;Strap-down
  • 中文刊名:YHXB
  • 英文刊名:Journal of Astronautics
  • 机构:西北工业大学精确制导与控制研究所;西北工业大学机电学院;中国运载火箭研究院首都航天机械公司;
  • 出版日期:2019-03-30
  • 出版单位:宇航学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(61703339)
  • 语种:中文;
  • 页:YHXB201903009
  • 页数:10
  • CN:03
  • ISSN:11-2053/V
  • 分类号:68-77
摘要
针对全捷联导引头探测器与弹体固连带来的视线(LOS)测量与弹体姿态的耦合问题,基于干扰观测器和动态面控制提出一种考虑全捷联视线角(FOV)约束的制导控制一体化(IGC)设计方法。首先建立起具有严格状态反馈形式的全捷联制导控制一体化设计模型;其次,针对目标机动和气动扰动带来的模型不确定,设计了一种非线性干扰观测器对其进行在线估计,并将其估计信息的平方引入设计过程;第三,针对全捷联模式下有限视场角凸显的状态约束问题,基于积分型障碍Lyapunov函数与动态面控制设计了一体化制导控制规律,并对闭环系统的稳定性和信号的一致有界特性进行了证明。仿真结果表明,在目标进行不同类型机动和气动扰动存在的条件下,所设计方法均能保证制导精度以及视场角满足约束条件。
        Aiming at the coupling problem of the line-of-sight(LOS) measurement and missile attitude caused by the connection of the strap-down seeker and the missile body, a novel integrated guidance and control(IGC) method considering the field-of-view(FOV) angle constraint of the strap-down seeker is proposed based on the disturbance observer and the dynamic surface control theory. Firstly, the strict feedback state equation for the IGC design with FOV angle constraint is built. Secondly, a nonlinear disturbance observer is designed to estimate the model uncertainties which include the target maneuvering and the aerodynamic parameter disturbance, and the square of the estimation results are employed to the IGC design. Thirdly, the FOV constraint issue is handled based on the integral barrier Lyapunov function and the dynamic surface control, and the proof of the stability of the closed system and the uniform ultimately boundedness of the signals is also carried out using the Lyapunov theorem. The simulation results imply that the proposed IGC law can not only ensure the interception accuracy, but also satisfy the FOV angle constraint in the presence of different target maneuvering and the aerodynamic parameter disturbance.
引文
[1] 白瑞,夏群利,张道驰. 全捷联导引头视线角速度STCKF提取技术[J]. 红外与激光工程, 2017, 46(11): 181-189. [Bai Rui, Xia Qun-li, Zhang Dao-chi. Technology of line-of-sight rate estimation using STCKF for strapdown seeker[J]. Infrared and Laser Engineering, 2017, 46(11): 181-189.]
    [2] 赵坤,曹登庆,黄文虎. 基于自抗扰控制的弹头制导与控制一体化设计[J]. 宇航学报, 2017, 38(10): 1068-1078. [Zhao Kun, Cao Deng-qing, Huang Wen-hu. Integrated guidance and control design for reentry warhead based on ADRC[J]. Journal of Astronautics, 2017, 38(10): 1068-1078.]
    [3] Guo J G, Xiong Y, Zhou J. A new sliding mode control design for integrated missile guidance and control system[J]. Aerospace Science and Technology, 2018, 78: 54-61.
    [4] Hou M Z, Liang X L, Duan G R. Adaptive block dynamic surface control for integrated missile guidance and autopilot[J]. Chinese Journal of Aeronautics, 2013, 26(3): 741-750.
    [5] Wang X H, Wang J Z. Partial integrated missile guidance and control with finite time convergence[J]. Journal of Guidance, Control and Dynamics, 2013, 36(5): 1399- 1409.
    [6] 卢晓东,赵辉,赵斌,等. 基于干扰补偿的拦截弹制导控制一体化设计[J]. 控制与决策, 2017, 32(10): 1782-1788. [Lu Xiao-dong, Zhao Hui, Zhao Bin, et al. Disturbance compensation-based integrated guidance and control design for near space interceptor[J]. Control and Decision, 2017, 32(10): 1782-1788.]
    [7] 赖超,王卫红,熊少锋. 拦截大机动目标的三维制导控制一体化设计[J]. 宇航学报, 2017, 38(7): 714-722. [Lai Chao, Wang Wei-hong, Xiong Shao-feng. Integrated guidance and control design against highly maneuvering target[J]. Journal of Astronautics, 2017, 38(7): 714-722.]
    [8] Zarchan P. Tactical and strategic missile guidance [M]. American Institute of Aeronautics and Astronautics, 2012.
    [9] 孙宝彩,范军芳. 全捷联小型弹药制导系统设计[J]. 红外与激光工程, 2014, 43(6): 1960-1965. [Sun Bao-cai, Fan Jun-fang. Guidance system design for deeply-strapdown miniature munitions[J]. Infrared and Laser Engineering, 2014, 43(6): 1960-1965.]
    [10] 姚郁,章国江. 捷联成像制导系统的若干问题探讨[J]. 红外与激光工程, 2006, 35(1): 1-6. [Yao Yu, Zhang Guo-jiang. Discussion on strapdown imaging guidance system[J]. Infrared and Laser Engineering, 2006, 35(1): 1-6.]
    [11] Li X W, Zhao B, Zhou J, et al. Integrated guidance and control for missiles with strap-down seeker [C]. The 36th Chinese Control Conference, Dalian, China, July 26-28, 2017.
    [12] 黄诘,张友安,刘永新. 一种有撞击角和视场角约束的运动目标的偏置比例导引算法[J]. 宇航学报, 2016, 37(2): 195-202. [Huang Jie, Zhang You-an, Liu Yong-xin. A biased proportional guidance algorithm for moving target with impact angle and field-of-view constraints[J]. Journal of Astronautics, 2016, 37(2): 195-202.]
    [13] Yang Z, Wang H, Lin D F. Time-varying biased proportional guidance with seeker’s field-of-view limit[J]. International Journal of Aerospace Engineering, 2016: 9272019.
    [14] Ratnoo A. Analysis of two-stage proportional navigation with heading constraints[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(1): 156-164.
    [15] Shaferman V. Optimal guidance with an in route look-angle constraint [C]. AIAA Guidance, Navigation, and Control Conference, Texas, USA, January 9-13, 2017.
    [16] Park B G, Kim T H, Tahk M J. Optimal impact angle control guidance law considering the seeker’s field-of-view limits[J]. Proc IMechE, Part G: Journal of Aerospace Engineering, 2012, 227(8): 1347-1364.
    [17] Wang X L, Zhang Y A, Wu H L. Sliding mode control based impact angle control guidance considering the seeker’s field-of-view constraint[J]. ISA Transactions, 2016, 61: 49-59.
    [18] Zhang Y A, Wang X L, Wu H L. Impact time control guidance with field-of-view constraint accounting for uncertain system lag[J]. Proc IMechE, Part G: Journal of Aerospace Engineering, 2016, 230(3): 515-529.
    [19] Tee K P, Ge S S, Tay E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems[J]. Automatica, 2009, 45(4): 918-927.
    [20] 韩京清,袁露林. 跟踪-微分器的离散形式[J]. 系统科学与数学, 1999, 19(3): 268-273. [Han Jing-qing, Yuan Lu-lin. The discrete form of tracking differentiator[J]. Journal of Systems Science and Mathematical Sciences, 1999, 19(3): 268-273.]
    [21] Tee K P, Ge S S. Control of state-constrained nonlinear systems using integral barrier Lyapunov functional [C]. The 51st IEEE Conference on Decision and Control, Hawaii, USA, December 10-13, 2012.
    [22] Zhao B, Zhou J. Smooth adaptive finite time guidance law with impact angle constraints[J]. International Journal of Aerospace Engineering, 2016, 5730168.
    [23] Hou M Z, Duan G R. Adaptive dynamic surface control for integrated missile guidance and autopilot[J]. International Journal of Automation and Computing, 2011, 8(1): 122-127.
    [24] Sun C Y, Feng C B. Exponential periodicity and stability of delays neural networks[J]. Mathematics and Computers in Simulation, 2004, 66(5): 469-478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700