脉冲放电和高能球磨组合制备纳米硅颗粒的储锂性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Lithium Storage Properties of Nanometer Silicon Particles Prepared by Pulse Discharge and High-energy Ball Milling
  • 作者:孙洪凯 ; 赵明才 ; 张娟 ; 曹祥威 ; 汪炜
  • 英文作者:SUN Hongkai;ZHAO Mingcai;ZHANG Juan;CAO Xiangwei;WANG Wei;College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics;
  • 关键词:纳米硅 ; 脉冲放电 ; 高能球磨 ; 重掺杂
  • 英文关键词:silicon nanoparticles;;pulse discharge;;high-energy ball milling;;heavily doped
  • 中文刊名:DJGU
  • 英文刊名:Electromachining & Mould
  • 机构:南京航空航天大学机电学院;
  • 出版日期:2018-04-01
  • 出版单位:电加工与模具
  • 年:2018
  • 期:No.338
  • 基金:国家自然科学基金资助项目(51675275)
  • 语种:中文;
  • 页:DJGU2018S1008
  • 页数:7
  • CN:S1
  • ISSN:32-1589/TH
  • 分类号:30-35+56
摘要
按照一种高质高效、自上而下的纳米硅制备方法,以P型重掺杂晶体硅和N型重掺杂晶体硅为原料,探究不同重掺杂类型对电化学性能的影响。采用脉冲放电和高能球磨组合法制备纳米硅颗粒,获得平均粒径(D50)约为100 nm且尺寸分布均匀的硅颗粒。结果表明:P型重掺杂纳米硅的首次充电比容量为1646.5 m Ah/g、库伦效率为65.92%,经过50圈循环,其可逆比容量保持为1353.7 m Ah/g;N型重掺杂纳米硅的首次充电比容量为1730.7 m Ah/g、库伦效率为66.04%,经50圈循环,其可逆比容量保持为1400.1 m Ah/g。
        In this paper, according to a high quality and efficiency, top-down nano-silicon preparation method. The effects of doping concentration and doping type on the electrochemical properties were investigated by using P-type heavily doped crystalline silicon and N-type heavily doped crystalline silicon. By using pulsed discharge and high energy ball milling to prepare the nanosized silicon particles,the microparticles were obtained with uniform size and average particle size(D50) at about 100 nm. The first time charge specific capacity of P-type heavily doped nano-silicon is1646.5 m Ah/g,the Coulombic efficiency is 65.92%,and after 50 cycles,the reversible specific capacity is maintained at 1353.7 m Ah/g. The first time charge specific capacity of N-type lightly heavily doped nano-silicon is 1730.7 m Ah/g,the Coulombic efficiency is 66.04%,and after 50 cycles, the reversible specific capacity is maintained at 1400.1 m Ah/g.
引文
[1]张娟.光伏产业高纯切割硅废料作为高性能锂离子电池负极的应用基础研究[D].苏州:苏州大学,2016.
    [2]武明昊,陈剑,王崇,等.锂离子电池负极材料的研究进展[J].电池,2011,41(4):222-225.
    [3]陶占良,王洪波,陈军,锂离子电池负极硅基材料[J].化学进展,2011,23(2-3):318-327.
    [4]彭佳悦,祖晨曦,李泓.锂电池基础科学问题(Ⅰ)-化学储能电池理论能量密度的估算[J].储能科学与技术,2013,2(1):55-62.
    [5]LUO Fei,LIU Bonan,ZHENG Jieyun,et al.Reviewnano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries[J].Journal of The Electrochemical Society,2015,162(14):A2509-A2528.
    [6]刘烈凯,李苗,胡有根,等.N/P掺杂对锂离子电池硅负极材料性能的影响[C]//第18届全国固态离子学学术会议暨国际电化学储能技术论坛.桂林,2016.
    [7]MEGAHED S,SCROSATI B.Lithium-ion rechargeable batteries[J].Journal of Power Source,1994,51(1-2):79-104.
    [8]ZHANG Wei,WANG Wei,HONG Juan,et al.Preparation of silicon nanospheres by using electrical discharge machining method[J].Applied Mechanics and Materials,2012,130-134:980-983.
    [9]HUANG Zhipeng,ZHANG Xuanxiong,REICHE M,et al.Extended arrays of vertically aligned sub-10 nm diameter[100]Si nanowires by metal-assisted chemical etching[J].Nano Lett,2008,8(9):3046-3051.
    [10]GE Mingyuan,RONG Jiepeng,FANG Xin,et al.Porous doped silicon nanowires for lithium ion battery anode with long cycle life[J].Nano Lett,2012,12(5):2318-2323.
    [11]YU D P,LEE C S,BELLO I,et al.Synthesis of nanoscale silicon wires by excimer laser ablation at high temperature[J].Solid State Communications,1998,105(6):403-407.
    [12]SZCZECH J R,SONG Jin,Nanostructured silicon for high capacity lithium battery anodes[J].Energy and Environmental Science,2011,4(1):56-72.
    [13]CHAN C K,RUFFO R,HONG S S,et al.Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes[J].Journal of Power Sources,2009,189(2):1132-1140.
    [14]LIU Nian,HUO Kaifu,MCDOWELL M T,et al.Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes[J].Scientific Reports,2013,3(5):1919.
    [15]UESAWA N,INASAWA S,TSUJI Y,et al.Gas-phase synthesis of rough silicon nanowires via the zinc reduction of silicon tetrachloride[J].Journal of Physical Chemistry C:2010,114(10):4291-4296.
    [16]CHAN C K,PENG H L,LIU G,et al.High-performance lithium battery anodes using silicon nanowires,Nature Nanotechnology2008(3):31-35.
    [17]周述.利用冷等离子体制备硅和硼纳米颗粒[D].杭州:浙江大学,2013.
    [18]赵明才,曹祥威,孙洪凯,等.火花放电和高能球磨组合高效制备纳米硅颗粒[J].电加工与模具,2017(4):15-19.
    [19] VONS V A,DESMET L C P M,MUNAO D,et al. Silicon nanoparticles produced by spark discharge[J]. Journal of Nanoparticle Research,2011,13(10):4867-4879.
    [20] SHEN T D,KOCH C C,MCCORMICK T L,et al. The structure and properties of amorphous/nanocrystallite silicon produced by ball milling[J]. Journal of Materials Research,1995,10(1):139-148.
    [21] FAVORS Z,WANG Wei,BAY H H,et al. Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion batteries[J]. Scientific Reports,2014(4):5623.
    [22] DVILA L P,LEPPERT V J,RISBUD S H.Microstructure and microchemistry of silicon particles formed during electrical-discharge machining[J].Journal of Materials Science Materials in Electronics,2003,14(8):507-510.
    [23] BRANDON R, MARIA K. Y. CHAN. Dopant modulated Li insertion in Si for battery anodes:theory and experiment[J]. Physical Chemistry Chemical Physics,2011(115):18916-18921.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700