碳源补充促进人工湿地脱氮研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Nitrogen Removal Promotion in Constructed Wetland System by Carbon Addition
  • 作者:黄杉 ; 怀静 ; 吴娟 ; 钟非 ; 成水平
  • 英文作者:HUANG Shan;HUAI Jing;WU Juan;ZHONG Fei;CHENG Shuiping;Tongji University, Key Laboratory of Yangtze River Water Environment, Ministry of Education;
  • 关键词:人工湿地 ; 藻类 ; 硝化反硝化 ; 碳源
  • 英文关键词:constructed wetland;;algae;;nitrification and denitrification;;carbon source
  • 中文刊名:SCLJ
  • 英文刊名:Technology of Water Treatment
  • 机构:同济大学长江水环境教育部重点实验室;
  • 出版日期:2018-01-10
  • 出版单位:水处理技术
  • 年:2018
  • 期:v.44;No.312
  • 基金:国家自然科学基金(51578395)
  • 语种:中文;
  • 页:SCLJ201801003
  • 页数:4
  • CN:01
  • ISSN:33-1127/P
  • 分类号:18-21
摘要
介绍了人工湿地的脱氮机制和影响因素,以及常用的反硝化外加碳源。人工湿地的脱氮机制主要包括基质吸附、植物吸收和微生物硝化反硝化等。但进入人工湿地的污水往往碳氮比较低,限制了脱氮效率,往往需要添加外源碳来提高人工湿地的脱氮效果;结合微藻可同化吸收利用氮磷,并在死亡分解过程中会释放有机物的规律。认为可构建藻类-人工湿地耦合系统,利用藻类作为人工湿地反硝化过程的外加碳源,以提高人工湿地脱氮效率。
        The mechanism and influence factors of denitrification in constructed wetland(CW), as well as common denitrification with additional carbon resources were introduced. Medium adsorption, plant uptake and microbial degradation are the main mechanisms of nitrogen removal in CW. However,the carbon nitrogen ratio of sewage discharged into CW was usually low which limited the nitrogen removal efficiency. External carbon source was added to improve the nitrogen removal efficiency in CW. In addition, algae could absorb nitrogen and phosphorus from water, and release organic matters in decomposition process. Integrated algal pond-CW system could be construct and algal could be used as the additional carbon sources in denitrification process to improve the nitrogen removal efficiency of CW.
引文
[1]GUO W,LI Z,CHENG S,et al.Performance of a pilot-scale constructed wetland for stormwater runoff and domestic sewage treatment on the banks of a polluted urban river[J].Water Science&Technology,2014,69(7):1410-1418.
    [2]杨福利,李秀辰,白晓磊,等.小球藻脱氮除磷及其生物量增殖潜力的研究[J].大连海洋大学学报,2014(2):193-197.
    [3]卢少勇,万正芬,李锋民,等.29种湿地填料对氨氮的吸附解吸性能比较[J].环境科学研究,2016,29(8):1187-1194.
    [4]ZHANG M,LUO P,LIU F,et al.Nitrogen removal and distribution of ammonia-oxidizing and denitrifying genes in an integrated constructed wetland for swine wastewater treatment[J].Ecological Engineering,2017,104:30-38.
    [5]LEE C,FLETCHER T D,SUN G.Nitrogen removal in constructed wetland systems[J].Engineering in Life Sciences,2009,9(1):11-22.
    [6]LIN Y,JING S,LEE D,et al.Nitrate removal from groundwater using constructed wetlands under various hydraulic loading rates[J].Bioresource Technology,2008,99(16):7504-7513.
    [7]余志敏,袁晓燕,刘胜利,等.水力条件对复合人工湿地处理城市受污染河水效果的影响[J].环境工程学报,2011,5(4):757-762.
    [8]丁怡,宋新山,严登华.影响潜流人工湿地脱氮主要因素及其解决途径[J].环境科学与技术,2011,30(S2):103-106.
    [9]陶巍,王进.人工合成针铁矿与颗粒活性炭、石英砂作为反硝化生物滤池填料的比较[J].广东化工,2017,44(6):27-28.
    [10]张政,付融冰,顾国维,等.人工湿地脱氮途径及其影响因素分析[J].生态环境,2006,15(6):1385-1390.
    [11]CUI L,LI W,ZHANG Y,et al.Nitrogenremoval in a horizontal subsurface flow constructed wetland estimated using the first-order kinetic mode[J].Water,2016,11(8):514-528.
    [12]ZHOU Q,ZHU H,BA?UELOS G,et al.Effects of vegetation and temperature on nutrient removal and microbiology in horizontal subsurface flow constructed wetlands for treatment of domestic sewage[J].Water,Air and Soil Pollution,2017,228(3):1-13.
    [13]CHEN Y,WEN Y,ZHOU Q,et al.Effects of plant biomass on nitrogen transformation in subsurface-batch constructed wetlands:A stable isotope and mass balance assessment[J].Water Research,2014,63:158-167.
    [14]WANG W,DING Y,WANG Y,et al.Intensified nitrogen removal in immobilized nitrifier enhanced constructed wetlands with external carbon addition[J].Bioresource Technology,2016,218:1261-1265.
    [15]武海涛.人工湿地反硝化脱氮外加碳源选择研究[D].杭州:浙江大学,2013:82.
    [16]GARCIA-MONTIEL D C,MELILLO J M,STEUDLER P A,et al.Carbon limitations to nitrous oxide emissions in a humid tropical forest of the Brazilian Amazon[J].Biology and Fertility of Soils,2003,38(5):267-272.
    [17]FLEMING-SINGER M S,HORNE A J.Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrification[J].Environmental Science&Technology,2002,36(6):1231-1237.
    [18]谭佑铭,罗启芳.不同碳源对固定化反硝化菌脱氮的影响[J].卫生研究,2003,32(2):95-97.
    [19]曹艳晓,龙腾锐,傅婵媛,等.剩余污泥碱解上清液作为反硝化碳源的回用量实验研究[J].土木建筑与环境工程,2010,32(1):125-130.
    [20]高景峰,彭永臻,王淑莹,等.以DO、ORP、p H控制SBR法的脱氮过程[J].中国给水排水,2001,17(4):6-11.
    [21]LIN Y F,JING S R,WANG T W,et al.Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands[J].Environmental Pollution,2002,119(3):413-420.
    [22]魏星,朱伟,赵联芳,等.植物秸秆作补充碳源对人工湿地脱氮效果的影响[J].湖泊科学,2010,22(6):916-922.
    [23]WEN Y,CHEN Y,ZHENG N,et al.Effects of plant biomass on nitrate removal and transformation of carbon sources in subsurfaceflow constructed wetlands[J].Bioresource Technology,2010,101(19):7286-7292.
    [24]刘刚,闻岳,周琪.人工湿地反硝化碳源补充研究进展[J].水处理技术,2010,36(4):1-5.
    [25]刘刚,闻岳,周琪.补充生物质强化水平潜流湿地去除硝酸盐氮研究[J].中国给水排水,2009,25(21):13-16.
    [26]陈鹏,周琪.高效藻类氧化塘处理有机废水的研究和应用[J].上海环境科学,2001(7):309-311.
    [27]DING Y,WANG W,LIU X,et al.Intensified nitrogen removal of constructed wetland by novel integration of high rate algal pond biotechnology[J].Bioresource Technology,2016,219:757-761.
    [28]刘磊,杨雪薇,陈朋宇,等.3种微藻对人工污水中氮磷去除效果的研究[J].广东农业科学,2014,41(11):172-176.
    [29]许云,梁文思,刘志媛.2株微藻对养殖废水中氮磷去除率的影响[J].热带生物学报,2014,5(3):228-232.
    [30]李志勇,郭祀远,李琳,等.藻类富集微量元素的机理研究[J].华南理工大学学报(自然科学版),1998,26(2):33-37.
    [31]孙小静,秦伯强,朱广伟.蓝藻死亡分解过程中胶体态磷、氮、有机碳的释放[J].中国环境科学,2007,27(3):341-345.
    [32]孙远军.淀山湖蓝藻碎屑的好氧降解和营养盐释放规律研究[J].中国环境科学,2013,33(11):2047-2052.
    [33]裴海燕,李富生,汤浅晶,等.藻细胞破碎释放有机物的特性[J].中国环境科学,2003,23(3):49-52.
    [34]包裕尉,卢少勇,司静,等.溶解氧和光照对狐尾藻衰亡释放氮磷碳的影响[J].环境科学与技术,2010,29(2):5-9.
    [35]刘菲菲,冯慕华,尚丽霞,等.温度对铜绿微囊藻(Microcystis aeruginosa)和鱼腥藻(Anabaena sp.)生长及胞外有机物产生的影响[J].湖泊科学,2014,26(5):780-788.
    [36]孔维宝,汪洋,杨红,等.不同营养方式对普通小球藻生长代谢及生化组分的影响[J].微生物学报,2015,55(3):299-310.
    [37]王立宁,方晶云,马军,等.化学预氧化对藻类细胞结构的影响及其强化混凝除藻[J].东南大学学报(自然科学版),2005,35(z1):182-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700