投加颗粒活性炭强化餐厨垃圾的厌氧处理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enhancing anaerobic methanogenic treatment of kitchen wastes by incorporating granular activated carbon
  • 作者:冯显露 ; 刘新颖 ; 孙德智 ; 刘洁琦 ; 霍达 ; 马嘉苑 ; 张真 ; 党岩
  • 英文作者:FENG Xian-lu;LIU Xin-ying;SUN De-zhi;LIU Jie-qi;HUO Da;MA Jia-yuan;ZHANG Zhen;DANG Yan;Beijing Key Laboratory for Source Control Technology of Water Pollution,Engineering Research Center for Water Pollution Source Control and Eco-remediation,College of Environmental Science and Engineering,Beijing Forestry University;
  • 关键词:直接种间电子传递 ; 厌氧产甲烷 ; 餐厨垃圾 ; 颗粒活性炭
  • 英文关键词:direct interspecies electron transfer;;methanogenesis;;kitchen waste;;granular activated carbon
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:北京林业大学环境科学与工程学院水体污染源控制技术北京市重点实验室北京市污染水体源控与生态修复技术高等学院工程研究中心;
  • 出版日期:2018-03-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:北京林业大学青年教师科学研究中长期项目(2015ZCQ-HJ-01);; 国家自然科学基金资助项目(51708031);; 大学生创新训练项目(240-131705003)
  • 语种:中文;
  • 页:ZGHJ201803028
  • 页数:6
  • CN:03
  • ISSN:11-2201/X
  • 分类号:220-225
摘要
通过投加颗粒活性炭(GAC)强化直接种间电子传递(DIET)进而提升餐厨垃圾的厌氧产甲烷处理效能,并研究了GAC投加导致的微生物群落变化.研究发现,投加了GAC的实验组反应器能够在更高的有机负荷下(10.4kg COD/(m~3·d))稳定运行并维持较高的甲烷产率,不投加GAC的对照组在有机负荷7.8kg COD/(m~3·d)时甲烷产率及p H值均明显降低,挥发酸大量积累,反应器酸化崩溃.微生物群落结构分析发现,GAC表面富集了大量可以胞外电子传递的细菌(占细菌丰度的34%)和可以参与DIET的产甲烷菌(占古菌丰度的88%),表明GAC的加入可以有效富集这两类微生物的生长,并可能通过GAC强化DIET促进了餐厨垃圾的厌氧消化.
        This paper investigated the hypothesis that enhancing anaerobic digestion of kitchen wastes by accelerating DIET through incorporating granular activated carbon(GAC).Besides,changes of microbial communities by the incorporation of GAC were also studied.The experimental results showed that,GAC reactors could operate stably with high methane production rate under the organic loading rate(OLR)as high as 10.4kg COD/(m~3·d).In contrast,for the control reactors without GAC incorporation,the methane production rate and p H declined sharply when the OLR increased to only 7.8kg COD/(m~3·d).In addition,the volatile fatty acids severely accumulated and resulted in the treatment efficiency of control reactors deteriorated.Microbial community analysis showed that bacteria capable of extracellular electron transfer(34%of bacterial community)and methanogens known to participate in DIET(88%of archaeal community)were significantly enriched on the GAC surface.It demonstrated that the addition of GAC could enrich these two groups of microbes and enhance the anaerobic digestion of kitchen waste through DIET.
引文
[1]Environmental Protection Agency US.Turning Food Waste into Energy at the East Bay Municipal Utility District(EBMUD)[R].Pacific Southwest,2007,Region 9U.S.EPA.
    [2]郝晓地,周鹏,曹达啓.餐厨垃圾处置方式及其碳排放分析[J].环境工程学报,2017,11(2):673-682.
    [3]汪群慧,马鸿志,王旭明,等.厨余垃圾的资源化技术[J].现代化工,2004,24(7):56-59.
    [4]王琦,李亚红,蔡伟民.提高厨余垃圾厌氧消化甲烷产量的研究进展[J].环境科学与技术,2006,29(B08):130-132.
    [5]Zhang C,Su H,Baeyens J,et al.Reviewing the anaerobic digestion of food waste for biogas production[J].Renewable and Sustainable Energy Reviews,2014,38:383-392.
    [6]Rotaru A E,Shrestha P M,Liu F,et al.A new model for electron flow during anaerobic digestion:direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J].Energy&Environmental Science,2014,7(1):408-415.
    [7]Liu F,Rotaru A E,Shrestha P M,et al.Promoting direct interspecies electron transfer with activated carbon[J].Energy&Environmental Science,2012,5(10):8982-8989.
    [8]Zhao Z,Zhang Y,Holmes D E,et al.Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors[J].Bioresource technology,2016,209:148-156.
    [9]Dang Y,Sun D,Woodard T L,et al.Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste(OFMSW)with carbon-based conductive materials[J].Bioresource Technology,2017,238:30-38.
    [10]Timur H,?zturk I.Anaerobic sequencing batch reactor treatment of landfill leachate[J].Water Research,1999,33(15):3225-3230.
    [11]Sasaki K,Morita M,Hirano S I,et al.Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles[J].Applied Microbiology and Biotechnology,2011,90(4):1555.
    [12]Fernández J,Pérez M,Romero L I.Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste(OFMSW)[J].Bioresource Technology,2008,99(14):6075–6080.
    [13]Kim G,Hyun M,Chang I,et al.Dissimilatory Fe(III)reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil[J].Journal of Applied Microbiology,2005,99(4):978-987.
    [14]Hernandez-Eugenio G,Fardeau M L,Cayol J L,et al.Sporanaerobacter acetigenes gen.nov.,sp.nov.,a novel acetogenic,facultatively sulfur-reducing bacterium[J].International Journal of Systematic and Evolutionary Microbiology,2002,52(4):1217-1223.
    [15]Lovley D R,Holmes D E,Nevin K P.Dissimilatory Fe(III)and Mn(IV)reduction[M].Advances in Microbial Physiology,2004,49:219-286.
    [16]Cord-Ruwisch R,Garcia J L.Isolation and characterization of an anaerobic benzoate-degrading spore-forming sulfate-reducing bacterium,Desulfotomaculum sapomandens sp.Nov[J].FEMS Microbiology Letters,1985,29(3):325-330.
    [17]Lovley D R,Giovannoni S,White D,et al.Geobacter metallireducens gen.nov.sp.nov.,a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals[J].Archives of Microbiology,1993,159(4):336-344.
    [18]Park D H,Zeikus J G.Improved fuel cell and electrode designs for producing electricity from microbial degradation[J].Biotechnology and Bioengineering,2003,81(3):348-355.
    [19]Kaksonen A H,Spring S,Schumann P,et al.Desulfovirgula thermocuniculi gen.nov.,sp.nov.a thermophilic sulfate-reducer isolated from a geothermal underground mine in Japan[J].International Journal of Systematic and Evolutionary Microbiology,2007,57(1):98-102.
    [20]Rotaru A E,Shrestha P M,Liu F,et al.Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J].Applied and Environmental Microbiology,2014,80(15):4599-4605.
    [21]Barredo M,Evison L.Effect of propionate toxicity on methanogen-enriched sludge,Methanobrevibacter smithii,and Methanospirillum hungatii at different p H values[J].Applied and Environmental Microbiology,1991,57(6):1764-1769.
    [22]Cruz Viggi C,Rossetti S,Fazi S,et al.Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation[J].Environmental Science&Technology,2014,48(13):7536-7543.
    [23]Lovley D R.Happy together:microbial communities that hook up to swap electrons[J].The ISME Journal,2017,11(2):327-336.
    [24]Lovley D R,Ueki T,Zhang T,et al.Geobacter:the microbe electric’s physiology,ecology,and practical applications[M].Advances in Microbial Physiology,2011,59(1):1-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700