餐厨垃圾厌氧干发酵产氢特性及其调控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrogen generation and its adjustment from food wastes by dry fermentation
  • 作者:高常卉 ; 黄振兴 ; 赵明星 ; 席克忠 ; 施万胜 ; 阮文权
  • 英文作者:GAO Changhui;HUANG Zhenxing;ZHAO Mingxing;XI Kezhong;SHI Wansheng;RUAN Wenquan;School of Environment and Civil Engineering,Jiangnan University;Jiangsu Key Laboratory of Anaerobic Biotechnology,Jiangnan University;Zhengzhou Qiaolian Biological Energy Co.Ltd.;
  • 关键词:餐厨垃圾 ; 干发酵 ; 氢气 ; 微生物菌群 ; 氯仿 ; 耗氢
  • 英文关键词:food wastes;;dry fermentation;;hydrogen;;microbial community;;chloroform;;hydrogen consumption
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:江南大学环境与土木工程学院;江南大学江苏省厌氧生物技术重点实验室;郑州侨联生物能源有限公司;
  • 出版日期:2018-06-05
  • 出版单位:环境工程学报
  • 年:2018
  • 期:v.12
  • 基金:国家自然科学基金资助项目(51508230,21506076);; 国家科技支撑计划项目(2013BAB11B02);; 河南省科技开发合作项目(172106000030)
  • 语种:中文;
  • 页:HJJZ201806033
  • 页数:10
  • CN:06
  • ISSN:11-5591/X
  • 分类号:285-294
摘要
采用干发酵技术以餐厨垃圾为底物进行产氢实验,比较不同TS(20%、22%、24%和30%)条件下的产氢情况,修正的Gompertz模型能够较好地拟合餐厨垃圾干发酵过程中的产氢情况(R2>0.97),获得最佳的TS为22%。反应1.5 d后,累积产氢量出现下降,发现反应体系内存在耗氢现象,微生物群落结构显示TS 22%组优势菌属为Lactobacillus。随后,在TS含量为22%的条件下,添加氯仿对耗氢进行抑制。结果表明:添加0.05%的氯仿能够显著提高产氢量,最大累积产氢量为29.66 mL·g~(-1)(TS),是对照组的1.29倍;氯仿添加量为0.05%时,碳水化合物的降解率最高,达到43.07%;氯仿不仅会对耗氢产生抑制,同时也会抑制产氢,适宜浓度的氯仿能够提高餐厨垃圾干发酵产氢,最佳添加量为0.05%;餐厨垃圾干发酵产氢过程为丁酸型发酵,主要的液相末端发酵产物为乙酸和丁酸。
        Hydrogen generation from food wastes by dry fermentation was indicated, the different TS contents(20%, 22%, 24% and 30%) of the reaction system were compared, the modified Gompertz model could be fitted for the hydrogen generation from food wastes by the dry fermentation(R~2>0.97), the optimal TS content of the reaction system was found to be 22%. The cumulative hydrogen yield decreased after 1.5 days, and the hydrogen consumption phenomenon was existed, microbial community structure data showed that dominant microorganism was Lactobacillus in the group of TS 22%. Subsequently, the chloroform was added to inhibit the hydrogen consumption under the TS of 22%. The results showed that it could significantly increase the cumulative hydrogen yield by adding chloroform of 0.05%, and the maximum cumulative hydrogen yield reached 29.66 m L·g~(-1)(TS), which was1.29 times of the control group. The degradation rate of carbohydrate reached the highest value of 43.07% when the addition chloroform was 0.05%. It was found that chloroform could not only inhibit the hydrogen consumption but also the hydrogen generation process, the appropriate addition concentration of chloroform could improve hydrogen generation yield from food wastes by dry fermentation, the optimal addition concentration was 0.05% in this study.The fermentation type of this dry fermentation from food wastes was the butyrate fermentation type, and the mainly liquid fermentation products were acetic acid and butyric acid.
引文
[1]郝晓地,周鹏,曹达啓.餐厨垃圾处置方式及其碳排放分析[J].环境工程学报,2017,11(2):673-682.DOI:10.12030/j.cjee.201508159.
    [2]HAN W,YE M,ZHU A J,et al.A combined bioprocess based on solid-state fermentation for dark fermentative hydrogen production from food waste[J].Journal of Cleaner Production,2016,112:3744-3749.DOI:10.1016/j.jclepro.2015.08.072.
    [3]林艺芸.预处理污泥与餐厨垃圾联合产氢试验研究[D].福州:福建师范大学,2008.
    [4]ANGERIZCAMPOY R,ALVAREZGALLEGO C J,ROMEROGARCIA L I.Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste(OFMSW)with food waste(FW):Enhancement of bio-hydrogen production[J].Bioresource Technology,2015,194(1):291-296.DOI:10.1016/j.biortech.2015.07.011.
    [5]李燕红,林钰,杏艳,等.农作物秸秆废弃物厌氧发酵生物制氢的研究[J].环境科学与技术,2006,29(11):8-9.
    [6]马磊,王德汉,曾彩明.餐厨垃圾的干式厌氧消化处理技术初探[J].中国沼气,2007,25(1):27-30.
    [7]ESAMADONY M,TAWFIK A.Dry anaerobic co-digestion of organic fraction of municipal waste with paperboard mill sludge and gelatin solid waste for enhancement of hydrogen production[J].Bioresource Technology,2015,191:157-165.DOI:10.1016/j.biortech.2015.05.017.
    [8]ESAMADONY M,TAWFIK A.Potential of biohydrogen production from organic fraction of municipal solid waste(OFMSW)using pilot-scale dry anaerobic reactor[J].Bioresource Technology,2015,196:9-16.DOI:10.1016/j.biortech.2015.07.048.
    [9]XIAO B,LIU J.Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation[J].Journal of Hazardous Materials,2009,168(1):163-167.DOI:10.1016/j.jhazmat.2009.02.008.
    [10]ESAMADONY M,TAWFIK A,SUZUKI M.Surfactant-enhanced biohydrogen production from organic fraction of municipal solid waste(OFMSW)via dry anaerobic digestion[J].Applied Energy,2015,149:272-282.DOI:10.1016/j.apenergy.2015.03.127.
    [11]陆源,谢育红,郑育毅,等.不同热处理温度对污泥厌氧发酵产氢的影响[J].环境工程学报,2013,7(12):4995-5000.
    [12]赵明星,严群,阮文权,等.丁酸胁迫对产氢污泥以厨余为底物的产氢影响[J].环境工程学报,2010,4(11):2603-2607.
    [13]魏自民,夏天明,李鸣晓,等.不同湿热预处理条件对餐厨垃圾厌氧发酵产氢的影响[J].环境科学研究,2013,26(11):1239-1245.
    [14]昌盛,李建政,李伟光,等.厌氧活性污泥发酵制氢系统中的同型产乙酸作用及其控制[J].太阳能学报,2011,32(4):439-445.
    [15]李建政,许一平,张立国,等.厌氧活性污泥发酵制氢系统中的同型产乙酸菌及耗氢作用[J].科技导报,2011,29(24):29-32.
    [16]HU B,CHEN S.Pretreatment of methanogenic granules for immobilized hydrogen fermentation[J].International Journal of Hydrogen Energy,2007,32(15):3266-3273.DOI:10.1016/j.ijhydene.2007.03.005.
    [17]中华人民共和国建设部.城市污水处理厂污泥检验方法[M].3版.北京:中国标准出版社,2006.
    [18]王福荣.生物工程分析与检验[M].北京:中国轻工业出版社,2006.
    [19]国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [20]刘晓风,廖银章,刘克鑫.城市有机垃圾厌氧干发酵研究[J].太阳能学报,1995,16(2):170-173.
    [21]TYAGI V K,ANGERIZ C R,ALVAREZGALLEGO C J,et al.Enhancement in hydrogen production by thermophilic anaerobic co-digestion of organic fraction of municipal solid waste and sewage sludge-optimization of treatment conditions[J].Bioresource Technology,2014,164(7):408-415.DOI:10.1016/j.biortech.2014.05.013.
    [22]LAY J J.A mathematical model for methane production from a landfill bioreactor treating the organic fraction of municipal solid wastes[J].1997,32:123-138.
    [23]LAY J J.Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose[J].Biotechnology&Bioengineering,2001,74(4):280-287.
    [24]张笑,蔡玮玮,王利红,等.固含率对酒糟与餐厨垃圾混合厌氧发酵产沼气的影响[J].农业环境科学学报,2013,32(5):1078-1084.
    [25]陈倩倩,刘芸,刘波,等.植物乳杆菌Lactobacillus plantarum(FJAT-7926)生物学特性研究[J].福建农业学报,2014,27(7):678-681.
    [26]祁昕.乳杆菌发酵工业废料海藻残渣产有机酸的研究[D].哈尔滨:东北农业大学,2015.
    [27]赵丹.餐厨垃圾制氢体系产氢菌分离及微生物群落结构研究[D].上海:华东师范大学,2009.
    [28]苏晓煜.产氢系统中的产氢产乙酸菌群强化及同型产乙酸菌群抑制[D].哈尔滨:哈尔滨工业大学,2011.
    [29]金大为,孙庆业,石先阳.氯仿处理厌氧污泥发酵制氢中微生物多样性的解析[J].微生物学通报,2010,37(6):811-816.
    [30]TAWFIK A,ELQELISH M,SALEM A.Efficient anaerobic co-digestion of municipal food waste and kitchen wastewater for bio-hydrogen production[J].International Journal of Green Energy,2014,12(12):1301-1308.DOI:10.1080/15435075.2014.909357.
    [31]李明,牛冬杰,赵由才,等.固体废物厌氧暗发酵生物产氢技术进展[J].环境科学与技术,2009,32(3):62-66.
    [32]刘广民,董永亮,薛建良,等.果蔬废弃物厌氧消化特征及固体减量研究[J].环境科学与技术,2009,32(3):27-30.
    [33]刘盛萍,金杰,吴克,等.固含量对生物废物干式厌氧消化的影响[J].环境卫生工程,2008,16(5):59-62.
    [34]王勇,任南琪,孙寓姣,等.乙醇型发酵与丁酸型发酵产氢机理及能力分析[J].太阳能学报,2002,23(3):366-373.
    [35]左宜,左剑恶,张薇.利用有机物厌氧发酵生物制氢的研究进展[J].环境科学与技术,2004,27(1):97-99.
    [36]宋佳秀,任南琪,安东,等.产酸相发酵类型的制氢转化规律及比较[J].净水技术,2006,25(6):55-59.
    [37]ESAMADONY M,TAWFIK A,DANIAL A,et al.Optimization of hydrogen production from organic fraction of municipal solid waste(OFMSW)dry anaerobic digestion with analysis of microbial community[J].International Journal of Energy Research,2015,39(7):929-940.DOI:10.1002/er.3297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700