工业酵母抗逆机理研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress in stress tolerance of industrial yeasts
  • 作者:赵美琳 ; 诸葛斌 ; 陆信曜 ; 宗红 ; 施丁昌
  • 英文作者:ZHAO Mei-Lin;ZHUGE Bin;LU Xin-Yao;ZONG Hong;SHI Ding-Chang;Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University;Research Center of Industrial Microbiology, School of Biotechnology, Jiangnan University;
  • 关键词:工业酵母 ; 木质纤维素 ; 浓醪发酵 ; 抗逆机制
  • 英文关键词:Industrial yeasts;;Lignocellulose;;High gravity fermentation;;Stress tolerance mechanisms
  • 中文刊名:WSWT
  • 英文刊名:Microbiology China
  • 机构:江南大学生物工程学院工业生物技术教育部重点实验室;江南大学生物工程学院工业微生物研究中心;
  • 出版日期:2019-01-28 15:32
  • 出版单位:微生物学通报
  • 年:2019
  • 期:v.46
  • 基金:国家自然科学基金(31570052,31601456,21708016)~~
  • 语种:中文;
  • 页:WSWT201905022
  • 页数:10
  • CN:05
  • ISSN:11-1996/Q
  • 分类号:188-197
摘要
工业酵母利用木质纤维素等生物质资源发酵生产醇、酮、醛、酸等各种化合物,是解决人类面临的不可再生资源和能源危机的重要途径,这激发了人们对木质纤维素水解液为原料和环保节能型浓醪发酵技术的极度关注。然而高浓度底物、产物、渗透压、木质纤维素水解液中抑制性物质、发酵过程温度的提高均会抑制微生物生长代谢及发酵性能,这是发酵行业"瓶颈"问题。本文简述了渗透压、温度及抑制性物质对酵母细胞生长的危害,并从胞内稳态平衡、分子水平等方面着重叙述工业酵母对渗透压、温度及抑制性物质的抗逆机制研究进展。
        Biomass resources, such as lignocellulose fermentation by industrial yeasts to produce various compounds including alcohol, ketone, aldehyde, and so on, contribute to solving non-renewable energy crisis. Thereinto, abundance and low price lignocellulose fermentation and environmentally friendly and energy efficient high gravity fermentation have attracted a lot of attention. However, inhibition of cell growth and metabolism by toxic compounds formed during pretreatment of lignocellulose, high concentration of substrate and product, osmotic stress, and elevating temperature, is a bottleneck problem in the fermentation industry. Here, we introduce the effect of osmolarity, temperature, and toxic compounds on cell growth, and review recent advances in stress tolerance mechanisms of industrial yeasts for these harmful factors at intracellular homeostasis, molecular level and so on.
引文
[1]Wu YM,Ge JP.A literature review on biological fuel ethanol industry and outlook for in-depth study[J].Journal of Anhui Agricultural Sciences,2013,41(9):4008-4012(in Chinese)吴永民,葛建平.生物燃料乙醇产业研究综述与展望[J].安徽农业科学,2013,41(9):4008-4012
    [2]Kadhum HJ,Rajendran K,Murthy GS.Effect of solids loading on ethanol production:Experimental,Economic and Environmental analysis[J].Bioresource Technology,2017,244:108-116
    [3]Zhuge J,Fang HY,Wang ZX,et al.Glycerol production by a novel osmotolerant yeast Candida glycerinogenes[J].Applied Microbiology and Biotechnology,2001,55(6):686-692
    [4]Wang LJ,Dong Y.Ethanol production from jerusalem artichoke using Schizosaccharomyces pombe[J].Transactions of the Chinese Society for Agricultural Machinery,2010,41(1):106-110,116(in Chinese)汪伦记,董英.粟酒裂殖酵母发酵菊芋生产燃料乙醇试验[J].农业机械学报,2010,41(1):106-110,116
    [5]Pilap W,Thanonkeo S,Klanrit P,et al.The potential of the newly isolated thermotolerant Kluyveromyces marxianus for high-temperature ethanol production using sweet sorghum juice[J].Biotech,2018,8:126
    [6]Khoo HH.Review of bio-conversion pathways of lignocellulose-to-ethanol:sustainability assessment based on land footprint projections[J].Renewable and Sustainable Energy Reviews,2015,46:100-119
    [7]Almeida JRM,Modig T,Petersson A,et al.Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae[J].Journal of Chemical Technology and Biotechnology,2007,82(4):340-349
    [8]Ji H,Zhuge B,Zong H,et al.Role of CgHOG1 in stress responses and glycerol overproduction of Candida glycerinogenes[J].Current Microbiology,2016,73(6):827-833
    [9]Zhang Q,Han DM,Li MT.Research progress of high-concentration mash ethanol fermentation techniques[J].Chemical Industry and Engineering Progress,2014,33(3):724-729(in Chinese)张强,韩德明,李明堂.乙醇浓醪发酵技术研究进展[J].化工进展,2014,33(3):724-729
    [10]de Naal E,Alepuz PM,Posas F.Dealing with osmostress through MAP kinase activation[J].EMBO Reports,2002,3(8):735-740
    [11]Petelenz-Kurdziel E,Kuehn C,Nordlander B,et al.Quantitative analysis of glycerol accumulation,glycolysis and growth under hyper osmotic stress[J].PLoS Computational Biology,2014,10(5):e1003663
    [12]Chen XZ,Fang HY,Rao ZM,et al.Cloning and characterization of a NAD+-dependent glycerol-3-phosphate dehydrogenase gene from Candida glycerinogenes,an industrial glycerol producer[J].FEMS Yeast Research,2008,8(5):725-734
    [13]Ding WT,Zhang GC,Liu JJ.3′Truncation of the GPD1 promoter in Saccharomyces cerevisiae for improved ethanol yield and productivity[J].Applied and Environmental Microbiology,2013,79(10):3273-3281
    [14]Ji H,Lu XY,Zong H,et al.Functional and expression studies of two novel STL1 genes of the osmotolerant and glycerol utilization yeast Candida glycerinogenes[J].The Journal of General and Applied Microbiology,2018,64(3):121-126
    [15]Ji H,Lu XY,Zong H,et al.γ-aminobutyric acid accumulation enhances the cell growth of Candida glycerinogenes under hyperosmotic conditions[J].The Journal of General and Applied Microbiology,2018,64(2):84-89
    [16]Cao JX,Barbosa JM,Singh NK,et al.Gaba shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production[J].Yeast,2013,30(4):129-144
    [17]Mejía-Barajas J,Montoya-Pérez R,Manzo-Avalos S,et al.Fatty acid addition and thermotolerance of Kluyveromyces marxianus[J].FEMS Microbiology Letters,2018,365(7).DOI:10.1093/femsle/fny043
    [18]Caspeta L,Chen Y,Ghiaci P,et al.Altered sterol composition renders yeast thermotolerant[J].Science,2014,346(6205):75-78
    [19]Heilmann CJ,Sorgo AG,Mohammadi S,et al.Surface stress induces a conserved cell wall stress response in the pathogenic fungus Candida albicans[J].Eukaryotic Cell,2013,12(2):254-264
    [20]Nasution O,Lee J,Srinivasa K,et al.Loss of Dfg5glycosylphosphatidylinositol-anchored membrane protein confers enhanced heat tolerance in Saccharomyces cerevisiae[J].Environmental Microbiology,2015,17(8):2721-2734
    [21]Li PS,Fu XF,Zhang L,et al.The transcription factors Hsf1 and Msn2 of thermotolerant Kluyveromyces marxianus promote cell growth and ethanol fermentation of Saccharomyces cerevisiae at high temperatures[J].Biotechnology for Biofuels,2017,10:289
    [22]Hou XY,Hong KQ,Hao AL,et al.Truncation of CYR1 promoter in industrial ethanol yeasts for improved ethanol yield in high temperature condition[J].Process Biochemistry,2017,65:37-45
    [23]Nakamura T,Yamamoto M,Saito K,et al.Identification of a gene,FMP21,whose expression levels are involved in thermotolerance in Saccharomyces cerevisiae[J].AMB Express,2014,4:67
    [24]Yang F,Lu XY,Zong H,et al.Gene expression profiles of Candida glycerinogenes under combined heat and high-glucose stresses[J].Journal of Bioscience and Bioengineering,2018,126(4):464-469
    [25]Ding J,Holzwarth G,Bradford CS,et al.PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress[J].Applied Microbiology and Biotechnology,2015,99(20):8667-8680
    [26]Kumar V,Hart AJ,Keerthiraju ER,et al.Expression of mitochondrial cytochrome C oxidase chaperone gene(COX20)improves tolerance to weak acid and oxidative stress during yeast fermentation[J].PLoS One,2015,10(10):e0139129
    [27]Ding J,Holzwarth G,Penner MH,et al.Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance[J].FEMS Microbiology Letters,2015,362(3):1-7
    [28]Kawazoe N,Kimata Y,Izawa S.Acetic acid causes endoplasmic reticulum stress and induces the unfolded protein response in Saccharomyces cerevisiae[J].Frontiers in Microbiology,2017,8:1192
    [29]Zhang MM,Zhang KY,Mehmood MA,et al.Deletion of acetate transporter gene ADY2 improved tolerance of Saccharomyces cerevisiae against multiple stresses and enhanced ethanol production in the presence of acetic acid[J].Bioresource Technology,2017,245:1461-1468
    [30]Swinnen S,Henriques SF,Shrestha R,et al.Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering:towards the underlying mechanisms[J].Microbial Cell Factories,2017,16:7
    [31]Mira NP,Becker JD,Sá-Correia I.Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid[J].OMICS:A Journal of Integrative Biology,2010,14(5):587-601
    [32]Takabatake A,Kawazoe N,Izawa S.Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae[J].Applied Microbiology and Biotechnology,2015,99(6):2805-2814
    [33]Guerreiro JF,Mira NP,Santos A,et al.Membrane phosphoproteomics of yeast early response to acetic acid:role of Hrk1 kinase and lipid biosynthetic pathways,in particular sphingolipids[J].Frontiers in Microbiology,2017,8:1302
    [34]Chen YY,Stabryla L,Wei N.Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering[J].Applied and Environmental Microbiology,2016,82(7):2156-2166
    [35]Li QQ,Wang Y,Zhuge B,et al.Effect of overexpressing transcription factors of Candida glycerinogenes on acid tolerance of Saccharomyces cerevisiae[J].Chinese Journal of Applied and Environmental Biology,2017,23(6):1006-1010(in Chinese)李倩倩,王燕,诸葛斌,等.产甘油假丝酵母抗逆转录因子的过表达对酿酒酵母耐酸胁迫性的影响[J].应用与环境生物学报,2017,23(6):1006-1010
    [36]Unrean P.Flux control-based design of furfural-resistance strains of Saccharomyces cerevisiae for lignocellulosic biorefinery[J].Bioprocess and Biosystems Engineering,2017,40(4):611-623
    [37]Ishida Y,Nguyen TTM,Izawa S.The yeast ADH7 promoter enables gene expression under pronounced translation repression caused by the combined stress of vanillin,furfural,and5-hydroxymethylfurfural[J].Journal of Biotechnology,2017,252:65-72
    [38]Moon J,Liu ZL.Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH[J].Enzyme and Microbial Technology,2012,50(2):115-120
    [39]Wang HY,Ouyang YD,Zhou C,et al.YKL071W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of glycolaldehyde and furfural derived from lignocellulose[J].Applied Microbiology and Biotechnology,2017,101(23/24):8405-8418
    [40]Zhao XX,Tang J,Wang X,et al.YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass[J].Yeast,2015,32(5):409-422
    [41]Wang HY,Xiao DF,Zhou C,et al.YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity[J].Applied Microbiology and Biotechnology,2017,101(11):4507-4520
    [42]Kim D,Hahn JS.Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae’s tolerance to furfural and 5-hydroxymethylfurfural,which function as thiol-reactive electrophiles generating oxidative stress[J].Applied Microbiology and Biotechnology,2013,79(16):5069-5077
    [43]Kitichantaropas Y,Boonchird C,Sugiyama M,et al.Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation[J].AMB Express,2016,6:107
    [44]An B,Li BQ,Qin GZ,et al.Exogenous calcium improves viability of biocontrol yeasts under heat stress by reducing ROSaccumulation and oxidative damage of cellular protein[J].Current Microbiology,2012,65(2):122-127
    [45]Dong YC,Hu JJ,Fan LL,et al.RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae[J].Scientific Reports,2017,7:42659
    [46]Stratford M,Nebe-von-Caron G,Steels H,et al.Weak-acid preservatives:pH and proton movements in the yeast Saccharomyces cerevisiae[J].International Journal of Food Microbiology,2013,161(3):164-171
    [47]Zhang XH,Zhang Y,Wang Q,et al.Research and development on the microbial furfural-tolerance mechanism[J].Advances in New and Renewable Enengy,2017,5(3):189-196(in Chinese)张小欢,张宇,王琼,等.微生物耐受糠醛机制的研究进展[J].新能源进展,2017,5(3):189-196
    [48]Li X,Yang RH,Ma MG,et al.A novel aldehyde reductase encoded by YML131W from Saccharomyces cerevisiae confers tolerance to furfural derived from lignocellulosic biomass conversion[J].Bioenergy Research,2015,8(1):119-129
    [49]Wu GC,Xu ZX,J?nsson LJ.Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion[J].Microbial Cell Factories,2017,16:199
    [50]Jung YH,Kim S,Yang JW,et al.Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural[J].Microbial Biotechnology,2017,10(2):395-404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700