贵阳红黏土介-微观结构分形特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on fractal characteristics of meso-microstructure of red clay in Guiyang
  • 作者:左双英 ; 张彦召 ; 赵蕊 ; 张静
  • 英文作者:ZUO Shuangying;ZHANG Yanzhao;ZHAO Rui;ZHANG Jing;College of Resources and Environmental Engineering;Weinan Vocational & Technical College;
  • 关键词:地质工程 ; 贵阳红黏土 ; 介-微观结构 ; 分形特征 ; 粒度分析 ; 吸附测试
  • 英文关键词:geological engineering;;Guiyang red clay;;meso-microstructure;;fractal feature;;particle size analysis;;adsorption test
  • 中文刊名:BFJT
  • 英文刊名:Journal of Beijing Jiaotong University
  • 机构:贵州大学资源与环境工程学院;渭南职业技术学院;
  • 出版日期:2019-06-15
  • 出版单位:北京交通大学学报
  • 年:2019
  • 期:v.43;No.205
  • 基金:国家自然科学基金(51469007);; 贵州省山地地质灾害防治工程技术研究中心([2017]5402)~~
  • 语种:中文;
  • 页:BFJT201903016
  • 页数:8
  • CN:03
  • ISSN:11-5258/U
  • 分类号:127-134
摘要
为揭示贵阳红黏土介-微观结构分形特征和准确预测其宏观物理力学特性,通过对组成贵阳红黏土的颗粒和孔隙分别进行粒度分析和吸附测试,研究其颗粒和孔隙分形特征,并采用岩土体多孔介质分形模型合理预测孔隙率等宏观物理力学特性.研究结果表明:贵阳红黏土颗粒和孔隙分布均具有分维性,通过对比分析贵阳红黏土颗粒质量分维和体积分维,并考虑介-微观结构的影响,取其颗粒分维数为2.83;基于N_2吸附-脱附等温曲线,采用FHH模型和Pfeifer等理论求解出贵阳红黏土孔隙分维数为2.65,同时通过SEM图像定量计算出孔隙结构特征的量化参数与理论计算结果基本一致;采用Rieu和Sposito基于假想的团聚体模型和分形理论推导的土体孔隙率公式,结合贵阳红黏土基本物理力学试验,实现了对贵阳红黏土孔隙率的合理预测;结合不同干密度下贵阳红黏土三轴剪切试验结果,较好的分析了贵阳红黏土颗粒和孔隙分布分维特征及对初始干密度和宏观力学强度的影响.
        In order to study the fractal characteristics of the meso-micro structure of Guiyang red clay and accurately predict it's macroscopic physical and mechanical properties,the grain and pore fractal characteristics of Guiyang red clay are studied by conducting particle size analysis and adsorption test on them.The macroscopic physical and mechanical properties such as porosity is predicted by using porous media fractal model of rock and soil mass.The research results show that:the grain and pore distribution of Guiyang red clay have fractal dimension,and contrastive analysis is given on the particle fractal dimension and volume fractal dimension of Guiyang red clay,when the influence of the meso-microstructure is taken into consideration so that the particle fractal dimension is set as 2.83.Based on the adsorption-desorption isothermal curve of N_2,by using FHH model and Pfeifer theory,the pore fractal dimension of Guiyang red clay is2.65,and the parameters of the pore structure got in the quantitative calculation by SEM image are consistent with the theoretical calculation results.Based on the hypothetical aggregate model and fractal theory,the soil porosity formula is deduced by Rieu and Sposito,according to the results of basic physical and mechanical tests on Guiyang red clay,reasonable prediction of Guiyang red clay porosity is presented.By analyzing the influence of the particle gradation and fractal dimension in pore distribution of Guiyang red clay on the initial dry density,considering the results of triaxial shear test on Guiyang red clay under different dry densities,the effect of fractal dimensions of Guiyang red clay particle and pore distribution on its macroscopic mechanical strength is analyzed.
引文
[1]赵蕊,左双英,王嵩,等.不同含水量贵阳重塑红黏土三轴抗剪强度试验研究[J].水文地质工程地质,2015,42(5):90-95.ZHAO Rui,ZUO Shuangying,WANG Song,et al.Experiment and mechanism analysis of water contents on triaxial shear strength of the remodeled red clay of Guiyang[J].Hydrogeology&Engineering Geology,2015,42(5):90-95.(in Chinese)
    [2]ROMERO E,SIMMS P H.Microstructure investigation in unsaturated soils:a review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy[J].Geotechnical and Geological Engineering,2008,26(6):705-727.
    [3]LANGROUDI A A,YASROBI S S.A micro-mechanical approach to swelling behavior of unsaturated expansive clays under controlled drainage conditions[J].Applied Clay Science,2009,45(1/2):8-19.
    [4]TANG Y Q,SUN K,ZHANG X H,et al.Microstructure changes of red clay during its loss and leakage in the karst rocky desertification area[J].Environmental Earth Sciences,2016,75(6):537.
    [5]LATHAM J P,LU Y,MUNJIZA A.A random method for simulating loose packs of angular particles using tetrahedra[J].Géotechnique,2001,51(10):871-879.
    [6]TURCOTTE D L.Fractals and fragmentation[J].Journal of Geophysical Research,1986,91(S2):1921-1926.
    [7]KATZ A J,THOMPSON A H.Fractal sandstone pores:implications for conductivity and pore formation[J].Physical Review Letters,1985,54(12):1325-1328.
    [8]TYLER S W,WHEATCRAFT S W.Fractal scaling of soil particle-size distributions:analysis and limitations[J].Soil Science Society of America Journal,1992,56(2):362-369.
    [9]PFEIFER P,AVNIR D.Chemistry in noninteger dimensions between two and three.I.Fractal theory of heterogeneous surfaces[J].The Journal of Chemical Physics,1983,79(7):3558-3565.
    [10]AVNIR D,FARIN D,PFEIFER P.Chemistry in noninteger dimensions between two and three.II.Fractal surfaces of adsorbents[J].The Journal of Chemical Physics,1983,79(7):3566-3571.
    [11]FRIESEN W I,MIKULA R J.Fractal dimensions of coal particles[J].Journal of Colloid and Interface Science,1987,120(1):263-271.
    [12]BONALA M V S,REDDI L N.Fractal representation of soil cohesion[J].Journal of Geotechnical and Geoenvironmental Engineering,1999,125(10):901-904.
    [13]RIEU M,SPOSITO G.Fractal fragmentation,soil porosity,and soil water properties:I.theory[J].Soil Science Society of America Journal,1991,55(5):1231-1238.
    [14]RIEU M,SPOSITO G.Fractal fragmentation,soil porosity,and soil water properties:II.applications[J].Soil Science Society of America Journal,1991,55(5):1239-1244.
    [15]PERFECT E,MCLAUGHLIN N B,KAY B D,et al.An improved fractal equation for the soil water retention curve[J].Water Resources Research,1996,32(2):281-287.
    [16]MUALEM Y.A new model for predicting the hydraulic conductivity of unsaturated porous media[J].Water Resources Research,1976,12(3):513-522.
    [17]BIRD N R A,PERRIER E,RIEU M.The water retention function for a model of soil structure with pore and solid fractal distributions[J].European Journal of Soil Science,2000,51(1):55-63.
    [18]徐永福,董平.非饱和土的水分特征曲线的分形模型[J].岩土力学,2002,23(4):400-405.XU Yongfu,DONG Ping.Fractal models for the soilwater characteristics of unsaturated soils[J].Rock and Soil Mechanics,2002,23(4):400-405.(in Chinese)
    [19]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.粒度分析激光衍射法:GB/T19077-2016[S].北京:中国标准出版社,2016.General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration.Particle size analysis laser diffraction method:GB/T 19077-2016[S].Beijing:China Standard Press,2016.(in Chinese)
    [20]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.化学品平衡法检测吸附/解吸附试验:GB/T 21851-2008[S].北京:中国标准出版社,2008.General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration.Chemical absorption detection using a batch equilibrium method:GB/T21851-2008[S].Beijing:China Standard Press,2008.(in Chinese)
    [21]OCHIAI M,OZAO R,YAMAZAKI Y,et al.Self-similarity law of particle size distribution and energy law in size reduction of solids[J].Physica A:Statistical Mechanics and Its Applications,1992,191(1/4):295-300.
    [22]XU Y F,LIU S Y.Fractal character of grain-size distribution of expansive soils[J].Fractals,1999,7(4):359-366.
    [23]PFEIFER P,LIU K Y.Multilayer adsorption as a tool to investigate the fractal nature of porous adsorbents[J].Studies in Surface Science and Catalysis,1997,104:625-677.
    [24]TYLER S W,WHEATCRAFT S W.Fractal scaling of soil particle-size distributions:analysis and limitations[J].Soil Science Society of America Journal,1992,56(2):362-369.
    [25]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.YANG Peiling,LUO Yuanpei,SHI Yuanchun.Fractal characteristics of soil characterized by particle size distribution[J].Chinese Science Bulletin,1993,38(20):1896-1899.(in Chinese)
    [26]MANDELBROT B B.The fractal geometry of nature[M].New York:WH Freeman,1983.
    [27]廖义玲,余培厚.红粘土的微结构及其概化模型[J].工程地质学报,1994,2(1):27-37.LIAO Yiling,YU Peihou.The microstructure and generalized model of red clay[J].Journal of Engineering Geology,1994,2(1):27-37.(in Chinese)
    [28]周远忠,刘新荣,张梁,等.红粘土微观结构模型及其工程力学效应分析[J].地下空间与工程学报,2012,8(4):726-731.ZHOU Yuanzhong,LIU Xinrong,ZHANG Liang,et al.Study of micro-structure model of red clay and its engineering mechanical effect[J].Chinese Journal of Underground Space and Engineering,2012,8(4):726-731.(in Chinese)
    [29]徐永福,刘斯宏,董平.粒状土体的结构模型[J].岩土力学,2001,22(4):366-372.XU Yongfu,LIU Sihong,DONG Ping.Microstructural model for granular soils[J].Rock and Soil Mechanics,2001,22(4):366-372.(in Chinese)
    [30]中华人民共和国水利部.土工试验规程:SL 237-1999[S].北京:中国水利水电出版社,1999.Ministry of Water Resources of the People’s Republic of China.Specification of soil test:SL 237-1999[S].Beijing:China Water&Power Press,1999.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700