沙地赤松树干边材液流速率的方位特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Azimuthal Variation of the Sap Flow Rate in the Trunk of Pinus densiflora Planted in Sandy Land
  • 作者:韩辉 ; 张学利 ; 党宏忠 ; 宋晓东 ; 孟鹏 ; 张日升
  • 英文作者:HAN Hui;ZHANG Xue-li;DANG Hong-zhong;SONG Xiao-dong;MENG Peng;ZHANG Ri-sheng;Institute of Sand-fixation Afforestation Research of Liaoning Province;Zhanggutai Desert Ecosystem Research Station,Liaoning Province;Institute of Desertification, Chinese Academy of Forestry;
  • 关键词:液流速率 ; 赤松 ; 方位 ; 水分利用 ; 热扩散技术(TDP)
  • 英文关键词:sap flow rate;;Pinus densiflora;;azimuth;;water use;;Thermal Dissipation Probe method(TDP)
  • 中文刊名:LYKX
  • 英文刊名:Forest Research
  • 机构:辽宁省固沙造林研究所;辽宁章古台科尔沁沙地生态系统国家定位观测研究站;中国林业科学研究院荒漠化研究所;
  • 出版日期:2019-04-15
  • 出版单位:林业科学研究
  • 年:2019
  • 期:v.32
  • 基金:国家自然科学基金(31570704);; 中央基本科研业务资金(CAFYBB2014MA013)
  • 语种:中文;
  • 页:LYKX201902007
  • 页数:7
  • CN:02
  • ISSN:11-1221/S
  • 分类号:43-49
摘要
[目的]确定优良固沙树种沙地赤松(Pinus densiflora)树干边材液流速率(J_s)方位变化规律,探讨环境因素对方位差异的影响。[方法]采用热扩散式树干液流计(TDP)连续监测树干液流并同步监测环境因素,比较分析不同方位树干液流速率的差异、季节动态及与降水、土壤体积含水率(θ)、太阳辐射强度(R_s)间的关系。[结果]表明:(1)在赤松树干东、南、西、北4个方位上,J_s的日变化与季节变化均呈现出基本一致的格局,且均与R_s间表现出紧密的协同变化关系;(2)在中等强度干旱和极端干旱情况下,各方位边材J_s均同步受到明显抑制,在土壤水分得到充分补充后又快速回升;(3)在典型晴日里,树干各方位边材J_s其午间峰值出现的时刻有差异,呈从早到晚分别是东侧、南侧、西侧、北侧这种顺时针的方位规律;(4)在整个生长季,J_s的日平均值大小一般为南侧>西侧>北侧>东侧,但方位间差异并不显著(P=0.35),北侧J_s的平均值最接近4个方位的平均值(约为平均值的1.01倍)。[结论]为降低观测成本,通过北侧一个方位的测定来估算赤松单株的液流通量具有较好的可靠性;影响赤松各方位液流过程明显变化的θ的阈值为7.5%。
        [Objective] To determine the azimuthal variation of the sap flow rate of trunks(J_s) and estimate the effects of environmental factors on azimuthal variation. [Method] The sap flow rate of Pinus densiflora, an important windbreak and sand fixation species, was monitored continuously during the growing season using a thermal dissipation probe(TDP) method, combined with simultaneous observations of precipitation, soil moisture, and solar radiation and other environmental factors. [Result] The results of comprehensive analysis showed that the daily and seasonal changes of the J_s in the four directions of the trunk basically followed the same pattern, and all were in accordance with the solar radiation. In moderate-intensity drought and extreme drought conditions, the J_s of each direction was significantly suppressed simultaneously and quickly recovered after the soil moisture was fully replenished. On a typical sunny day, there were differences in the time at which the peaks of the J_s appeared at various times. From early to later, it ranked with the order of the east, south, west, and north sides clockwisely. During the whole growing season, the daily mean value of J_s was generally ranked of south>west>north>east, but the difference between directions was not significant(P = 0.35). Statistics show that the average of the J_s in the north side was the closest to the average of four azimuths(approximately 1.01 times the average). [Conclusion] The sap flow estimated through a measurement on the north side in the actual measurement will get better reliability in order to reduce the cost of observation. Meanwhile, the threshold value of soil moisture affecting the sap flow of Pinus densiflora is about 7.5%.
引文
[1] Chirino E,Bellot J,Sanchez J R.Daily sap flow rate as an indicator of drought avoidance mechanisms in five Mediterranean perennial species in semi-arid southeastern Spain[J].Trees,2011,25(4):593-606.
    [2] Nadezhdina N.Sap flow index as an indicator of plant water status[J].Tree Physiology,1999,19(13):885-891.
    [3] B?rja I,Světlík J,Nadezhdin V,et al.Sap flux-a real time assessment of health status in Norway spruce[J].Scandinavian Journal of Forest Research,2015,31(5):450-457.
    [4] Gong D Z,Kang S Z,Yao L M,et al.Estimation of evapotranspiration and its components from an apple orchard in northwest China using sap flow and water balance methods[J].Hydrological Processes,2007,21(7):931-938.
    [5] Whitley R,Medlyn B,Zeppel M,et al.Comparing the Penman–Monteith equation and a modified Jarvis-Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance[J].Journal of Hydrology,2009,373:256-266.
    [6] Lu P,Urban L,Zhao P.Granier's thermal dissipation probe (TDP) method for measuring sap flow in trees:theory and practice[J].Acta Botanica Sinica,2004,46(6):631-646.
    [7] 党宏忠,张劲松,赵雨森.应用热扩散技术对柠条锦鸡儿主根液流速率的研究[J].林业科学,2010,46(3):29-36.
    [8] 李振华,王彦辉,于澎涛,等.华北落叶松液流速率的优势度差异及其对林分蒸腾估计的影响[J].林业科学研究.2015,28(1):8-16.
    [9] 刘家霖,满秀玲,胡悦.兴安落叶松天然林不同分化等级林木树干液流对综合环境因子的响应[J].林业科学研究.2016,29(5):726-734.
    [10] 白志强,刘华,佘春燕,等.西伯利亚落叶松树干液流的动态变化[J].河北农业大学学报,2016,39(3):49-54.
    [11] 张友焱,周泽福,党宏忠,等.利用TDP茎流计研究沙地樟子松的树干液流[J].水土保持研究,2006,13(4):78-80.
    [12] 马建鹏,汪有科,陈滇豫,等.不同时间尺度上枣树树干液流的变异特性[J].干旱地区农业研究,2016,34(3):95-101.
    [13] 徐丹丹,尹立河,侯光才,等.毛乌素沙地旱柳和小叶杨树干液流密度及其与气象因子的关系[J].干旱区研究,2017,34(2):375-382.
    [14] 孟鹏.章古台沙地37年生赤松和樟子松生长特性研究[J].辽宁林业科技,2013(5):20-23,44.
    [15] 张日升.章古台沙地3种针叶树生长规律对比研究[J].安徽农业科学,2017,45(18):140-142,175.
    [16] 韩辉,张学利,党宏忠,等.基于树干液流通量的沙地樟子松合理林分密度的确定[J].林业科学研究,2015,28(6):797-803.
    [17] 韩辉,白雪峰,徐贵军,等.章古台樟子松树干液流的密度特征[J].东北林业大学学报,2013,41(4):27-31+82.
    [18] 卢志朋,魏亚伟,李志远,等.辽西北沙地樟子松树干液流的变化特征及其影响因素[J].生态学杂志,2017,36(11):3182-3189.
    [19] Dang H,Zha T,Zhang J,et al.Radial profile of sap flow velocity in mature Xinjiang poplar (Populus alba L.var.pyramidalis) in Northwest China[J].Journal of Arid Land,2014,6(5):612-627.
    [20] Lu P.A direct method for estimating the average sap flux density using a modified Granier measuring system[J].Functional Plant Biology,2001,24(28):701-705.
    [21] Granier A.Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J].Tree Physiology,1987,3(4):309-320.
    [22] Lu P,Woo K C,Liu Z T.Estimation of whole-plant transpiration of bananas using sap flow measurements[J].Journal of Experimental Botany,2002,53(375):1771-1779.
    [23] 孟秦倩,王健,张青峰,等.黄土山地苹果树树体不同方位液流速率分析[J].生态学报,2013,33(11):3555-3561.
    [24] Naithani K J,Ewers B E,Pendall E.Sap flux-scaled transpiration and stomatal conductance response to soil and atmospheric drought in a semi-arid sagebrush ecosystem[J].Journal of Hydrology,2012,464-465:176-185.
    [25] Clausnitzer F,Koestner B,Schwaerzel K,et al.Relationships between canopy transpiration,atmospheric conditions and soil water availability-Analyses of long-term sap-flow measurements in an old Norway spruce forest at the Ore Mountains/Germany[J].Agricultural and Forest Meteorology,2011,151(8):1023-1034.
    [26] 姚依强,陈珂,王彦辉,等.华北落叶松树干液流速率主要影响因子及关系的时间尺度变化[J].干旱区资源与环境,2017,31(2):155-161.
    [27] 万艳芳,于澎涛,刘贤德,等.祁连山青海云杉树干液流密度的优势度差异[J].生态学报,2017,37(9):3106-3114.
    [28] 李浩,胡顺军,朱海,等.基于热扩散技术的梭梭树干液流特征研究[J].生态学报,2017,37(21):7187-7196.
    [29] 张晓艳,褚建民,孟平,等.民勤绿洲荒漠过渡带梭梭(Haloxylon ammodendron(C.A.Mey) Bunge)树干液流特征及其对环境因子的响应[J].生态学报,2017,37(5):1525-1536.
    [30] 党宏忠,杨文斌,李卫,等.新疆杨树干液流的径向变化及时滞特征[J].生态学报,2015,35(15):5110-5120.
    [31] 胡广录,赵文智,谢国勋.干旱区植被生态需水理论研究进展[J].地球科学进展,2008,23(2):87-94.
    [32] 焦树仁.辽宁省章古台樟子松固沙林提早衰弱的原因与防治措施[J].林业科学,2001,37(2):131-138.
    [33] 焦树仁.辽宁章古台樟子松人工林水分动态的研究[J].植物生态学与地植物学学报,1987,11(4):296-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700