选区激光熔化铜合金纳米力学性能实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The experimental research of nano-mechanical property for copper alloy during selective laser melting
  • 作者:易力力 ; 毛忠发 ; 张正文
  • 英文作者:YI Li-Li;MAO Zhong-Fa;ZHANG Zheng-Wen;Machinery Transmission National Key Laboratory, Chongqing University;Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University;
  • 关键词:激光熔化 ; 增材制造 ; 纳米压痕 ; 铜合金 ; 硬度
  • 英文关键词:Laser melting;;Additive manufacturing;;Nanoindentation;;Copper alloy;;Hardness
  • 中文刊名:SCDX
  • 英文刊名:Journal of Sichuan University(Natural Science Edition)
  • 机构:重庆大学机械传动国家重点实验室;汕头大学智能制造技术教育部重点实验室;
  • 出版日期:2019-07-08 10:21
  • 出版单位:四川大学学报(自然科学版)
  • 年:2019
  • 期:v.56
  • 基金:国家高技术研究发展计划(“863”计划)(2015AA042501)
  • 语种:中文;
  • 页:SCDX201904017
  • 页数:6
  • CN:04
  • ISSN:51-1595/N
  • 分类号:115-120
摘要
针对选区激光熔化铜合金成形微观力学性能,采用正交实验设计方法,研究了不同工艺参数(激光功率、扫描速度、扫描间距)对成形样件纳米压痕硬度的影响.通过方差分析,得出了不同工艺参数对其纳米硬度影响程度,从而为选区激光熔化成形工艺提高零件表面微观力学性能提供理论指导.
        In view of the micro-mechanical property of copper alloy fabricated by selective laser melting(SLM), the effects of different processing parameters(laser power, scanning speed and scanning space) on the nanoindentation hardness were researched according to the orthogonal experimental design test method. Based on the analysis of variance, the impact degree of diverse processing parameters on the nanohardness was obtained, which could provide a theoretical direction for improving the micro-mechanical property of parts during SLM.
引文
[1]Kamran Mumtaz NH.Selective laser melting of Inconel 625using pulse shaping[J].Rapid Prototyping J,2010,16:248.
    [2]Ventura A P,Wade C A,Pawlikowski G,et al.Mechanical properties and microstructural characterization of Cu-4.3Pct Sn fabricated by selective laser melting[J].Metall Mater Trans A,2016,48:178.
    [3]Thijs L,Verhaeghe F,Craeghs T,et al.A study of the micro structural evolution during selective laser melting of Ti-6Al-4V[J].Acta Mater,2010,58:3303.
    [4]Gu D D,Meiners W,Wissenbach K,et al.Laser additive manufacturing of metallic components:materials,processes and mechanisms[J].Int Mater Rev,2013,57:133.
    [5]Kruth J P,Mercelis P,Van Vaerenbergh J,et al.Binding mechanisms in selective laser sintering and selective laser melting[J].Rapid Prototyping J,2005,11:26.
    [6]Strano G,Hao L,Everson R M,et al.Surface roughness analysis,modelling and prediction in selective laser melting[J].J Mater Process Technol,2013,213:589.
    [7]Leary M.Surface roughness optimisation for selective laser melting(SLM)[M]//Brandt M.Laser additive manufacturing.[S.l.]:Woodhead Publishing,2017:99.
    [8]Li C,White R,Fang X Y,et al.Microstructure evolution characteristics of inconel 625alloy from selective laser melting to heat treatment[J].Mater Sci Eng:A,2017,705:20.
    [9]Gu D D,Hagedorn Y C,Meiners W,et al.Densification behavior,microstructure evolution,and wear performance of selective laser melting processed commercially pure titanium[J].Acta Mater,2012,60:3849.
    [10]Huang Y C,Chang S Y,Chang C H.Effect of residual stresses on mechanical properties and interface adhesion strength of SiN thin films[J].Thin Solid Films,2009,517:4857.
    [11]Hao L,Raymont D,Yan C Z,et al.Design and additive manufacturing of cellular lattice structures[C]//Bartolo P J,et al.Innovative developments in virtual and physical prototyping.London:Taylor&Francis Group,2012:249.
    [12]Calignano F.Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting[J].Mater Des,2014,64:203.
    [13]Attar H,Prashanth K G,Chaubey A K,et al.Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes[J].Mater Lett,2015,142:38.
    [14]Zhou Y,Wen S F,Song B,et al.A novel titanium alloy manufactured by selective laser melting:microstructure,high temperature oxidation resistance[J].Mater Des,2016,89:1199.
    [15]Van Hooreweder B,Apers Y,Lietaert K,et al.Improving the fatigue performance of porous metallic biomaterials produced by selective laser melting[J].Acta Biomater,2017,47:193.
    [16]靳巧玲,李国禄,王海斗,等.纳米压痕技术在材料力学测试中的应用[J].表面技术2015,44:127.
    [17]Aboulkhair N T,Everitt N M,Ashcroft I,et al.Reducing porosity in AlSi10Mg parts processed by selective laser melting[J].Addit Manuf,2014,1-4:77.
    [18]Zhang B C,Lee X H,Bai J M,et al.Study of selective laser melting(SLM)Inconel 718part surface improvement by electrochemical polishing[J].Mater Des,2017,116:531.
    [19]Mao Z,Zhang D,Wei P,et al.Manufacturing feasibility and forming properties of Cu-4Sn in selective laser melting[J].Materials,2017,10:333.
    [20]Oliver W C,Pharr G M.An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments[J].J Mater Res,1992,7:1564.
    [21]Uzun O,K9lemen U,elebi S,et al.Modulus and hardness evaluation of polycrystalline superconductors by dynamic microindentation technique[J].JEur Ceram Soc,2005,25:969.
    [22]Scudino S,Liu G,Sakaliyska M,et al.Powder metallurgy of Al-based metal matrix composites reinforced withβ-Al3Mg2intermetallic particles:analysis and modeling of mechanical properties[J].Acta Mater,2009,57:4529.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700