化学预氧化耦合生物锰氧化对水中有机物的去除
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Removal of Organic Matter from Water by Chemical Preoxidation Coupled with Biogenic Manganese Oxidation
  • 作者:菅之舆 ; 常洋洋 ; 王立新 ; 梁金松 ; 柏耀辉
  • 英文作者:JIAN Zhi-yu;CHANG Yang-yang;WANG Li-xin;LIANG Jin-song;BAI Yao-hui;School of Ecology and Environment,Inner Mongolia University;Key Laboratory of Drinking Water Science and Technology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences;
  • 关键词:饮用水处理 ; 化学预氧化 ; 生物锰氧化 ; Pseudomonas ; sp.QJX-1 ; 酪氨酸 ; BP-4
  • 英文关键词:drinking water treatment;;chemical peroxidation;;biogenic manganese oxidation;;Pseudomonas sp.QJX-1;;Tyr;;BP-4
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:内蒙古大学生态与环境学院;中国科学院生态环境研究中心中国科学院饮用水科学与技术重点实验室;
  • 出版日期:2017-09-27 17:26
  • 出版单位:环境科学
  • 年:2018
  • 期:v.39
  • 基金:国家水体污染控制与治理科技重大专项(2015ZX07406006);; 国家自然科学基金项目(51578537)
  • 语种:中文;
  • 页:HJKZ201803027
  • 页数:7
  • CN:03
  • ISSN:11-1895/X
  • 分类号:230-236
摘要
在饮用水处理过程中,高锰酸钾与铁锰氧化物预氧化作为化学预氧化的典型工艺,能有效去除饮用水中有机物的污染,并控制消毒副产物(DBPs)的产生.但研究发现,这两种预氧化都会生成具有遗传毒性效应的Mn2+.为解决该问题,研究构想在化学预氧化后耦合生物锰氧化技术,通过生物作用将Mn2+转化为具有较强氧化吸附能力的生物锰氧化物,从而对水质进一步净化.在以天然有机物酪氨酸(Tyr)和人工合成有机物2-羟基-4-甲氧基二苯甲酮-5-磺酸(BP-4)为基质的模拟污染源水中,试验结果验证了上述构想.高锰酸钾或铁锰氧化物预氧化能够去除Tyr,但无法去除BP-4,并会产生Mn2+;在以锰氧化细菌Pseudomonas sp.QJX-1构建的生物体系中,Pseudomonas sp.QJX-1能利用Tyr进行生长并产生锰氧化,生成的生物锰氧化物能有效去除BP-4;在最优试验条件下,特定强度的高锰酸钾预氧化耦合生物锰氧化试验中Tyr、BP-4及Mn2+去除率分别为100%、50%和98.9%.
        In the process of drinking water treatment,potassium permanganate and iron-manganese oxides are typical pre-oxidation methods that can not only effectively remove organic matters in drinking water,but also reduce the production of disinfection byproducts(DBPs). However these two pre-oxidation methods will produce Mn~(2+)that is genotoxic. In order to solve this problem,a concept was proposed to connect biogenic-manganese oxidation technology after chemical oxidation. The manganese-oxidizing microbe may convert Mn~(2+)into the bio-manganese oxide,which can further remove the pollutants by its strong oxidative and adsorption capacity to improve water purification. In the simulated contaminated water composed of natural organic tyrosine(Tyr) and synthetic organic 2-Hydroxy-4-Methoxybenzophenone-5-Sulfonic Acid(BP-4),we verified the proposed the concept. Pre-oxidation by potassium permanganate or iron-manganese oxides efficiently removed Tyr,but had negligible effect on BP-4. During this,Mn~(2+)was generated.In the subsequent biological system,the manganese-oxidizing bacteria Pseudomonas sp. QJX-1 could utilize the Tyr for growth and oxidize Mn~(2+)to Mn4 +oxide. The generated manganese oxides could then effectively remove BP-4. In comparison,the moderate potassium permanganate preoxidation coupled with bio-manganese oxidation had a desirable treatment effect,with 100%,50%,and98. 9% removals for Tyr,BP-4,and Mn~(2+),respectively. Importantly,the study provides a new method for drinking water treatment.
引文
[1]Schwarzenbach R P,Escher B I,Fenner K,et al.The challenge of micropollutants in aquatic systems[J].Science,2006,313(5790):1072-1077.
    [2]Bulloch D N,Nelson E D,Carr S A,et al.Occurrence of halogenated transformation products of selected pharmaceuticals and personal care products in secondary and tertiary treated wastewaters from southern California[J].Environmental Science&Technology,2015,49(4):2044-2051.
    [3]Lin T,Yu S L,Chen W.Occurrence,removal and risk assessment of pharmaceutical and personal care products(PPCPs)in an advanced drinking water treatment plant(ADWTP)around Taihu Lake in China[J].Chemosphere,2016,152:1-9.
    [4]Chang H,Chen C,Wang G.Characteristics of C-,N-DBPs formation from nitrogen-enriched dissolved organic matter in raw water and treated wastewater effluent[J].Water Research,2013,47(8):2729-2741.
    [5]Richardson S D,Plewa M J,Wagner E D,et al.Occurrence,genotoxicity,and carcinogenicity of regulated and emerging disinfection by-products in drinking water:A review and roadmap for research[J].Mutation Research/Reviews in Mutation Research,2007,636(1-3):178-242.
    [6]Stevens A A,Moore L A,Miltner R J.Formation and control of non-trihalomethane disinfection by-products[J].Journal(American Water Works Association),1989,81(8):54-60.
    [7]Reckhow D A,Singer P C,Malcolm R L.Chlorination of humic materials:byproduct formation and chemical interpretations[J].Environmental Science&Technology,1990,24(11):1655-1664.
    [8]Hureiki L,CrouéJ P,Legube B.Chlorination studies of free and combined amino acids[J].Water Research,1994,28(12):2521-2531.
    [9]Wang P,He Y L,Huang C H.Reactions of tetracycline antibiotics with chlorine dioxide and free chlorine[J].Water Research,2011,45(4):1838-1846.
    [10]Dodd M C,Shah A D,Von Gunten U,et al.Interactions of fluoroquinolone antibacterial agents with aqueous chlorine:reaction kinetics,mechanisms,and transformation pathways[J].Environmental Science&Technology,2005,39(18):7065-7076.
    [11]Navalon S,Alvaro M,Garcia H.Reaction of chlorine dioxide with emergent water pollutants:product study of the reaction of threeβ-lactam antibiotics with Cl O2[J].Water Research,2008,42(8-9):1935-1942.
    [12]Pereira R O,Postigo C,De Alda M L,et al.Removal of estrogens through water disinfection processes and formation of by-products[J].Chemosphere,2011,82(6):789-799.
    [13]Nakajima M,Kawakami T,Niino T,et al.Aquatic fate of sunscreen agents Octyl-4-methoxycinnamate and Octyl-4-dimethylaminobenzoate in model swimming pools and the mutagenic assays of their chlorination byproducts[J].Journal of Health Science,2009,55(3):363-372.
    [14]Rook J J.Formation of haloforms during chlorination of natural waters[J].Journal of Water Treatment Examination,1974,23(2):234-243.
    [15]董秉直,姚迎迎,杜嘉丹.预氧化去除太湖水中有机物和臭味物质的研究[J].给水排水,2016,42(2):31-36.Dong B Z,Yao Y Y,Du J D.Study on the pre-oxidation of organics and odor in Taihu Lake[J].Water&Wastewater Engineering,2016,42(2):31-36.
    [16]李圭白,马军.用高锰酸钾去除和控制受污染水源水中的致突变物质[J].给水排水,1992,18(2):15-18,2-3.Li G B,Ma J.Removal and control of mutagen in contaminated water sources by potassium permanganate[J].Water&Wastewater Engineering,1992,18(2):15-18,2-3.
    [17]马军,李圭白,柏蔚华,等.高锰酸盐复合药剂预处理控制氯化消毒副产物及致突变活性[J].给水排水,1994,20(3):5-7,2.Ma J,Li G B,Bai W H,et al.Control of chlorination byproducts and mutagenic activity by composite permanganate pretreatment[J].Water&Wastewater Engineering,1994,20(3):5-7,2.
    [18]Ma M,Liu R P,Liu H J,et al.Effect of moderate pre-oxidation on the removal of Microcystis aeruginosa by KMn O4-Fe(Ⅱ)process:Significance of the in-situ formed Fe(Ⅲ)[J].Water Research,2012,46(1):73-81.
    [19]Zhang H C,Huang C H.Oxidative transformation of triclosan and chlorophene by manganese oxides[J].Environmental Science&Technology,2003,37(11):2421-2430.
    [20]Li H,Lee L S,Schulze D G,et al.Role of soil manganese in the oxidation of aromatic amines[J].Environmental Science&Technology,2003,37(12):2686-2693.
    [21]童蕾,曾梦玲,李民敬,等.铁锰氧化物对地下水环境中金霉素的降解[J].环境化学,2016,35(5):917-924.Tong L,Zeng M L,Li M J,et al.Degradation of chlorotetracycline by iron and manganese oxides under simulated groundwater environment[J].Environmental Chemistry,2016,35(5):917-924.
    [22]Chang Y Y,Bai Y H,Qu J H.Does KMn O4preoxidation reduce the genotoxicity of disinfection by-products?[J].Chemosphere,2016,163:73-80.
    [23]Bai Y H,Yang T T,Liang J S,et al.The role of biogenic FeMn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems[J].Water Research,2016,98:119-127.
    [24]Bai Y H,Chang Y Y,Liang J S,et al.Treatment of groundwater containing Mn(II),Fe(II),As(Ⅲ)and Sb(Ⅲ)by bioaugmented quartz-sand filters[J].Water Research,2016,106:126-134.
    [25]周娜娜,柏耀辉,梁金松,等.Pseudomonas sp.QJX-1的锰氧化特性研究[J].环境科学,2014,35(2):740-745.Zhou N N,Bai Y H,Liang J S,et al.Characterization of manganese oxidation by Pseudomonas sp.QJX-1[J].Environmental Science,2014,35(2):740-745.
    [26]Zhang G S,Qu J H,Liu H J,et al.Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal[J].Water Research,2007,41(9):1921-1928.
    [27]Krumbein W E,Altmann H J.A new method for the detection and enumeration of manganese oxidizing and reducing microorganisms[J].Helgolnder Wissenschaftliche Meeresuntersuchungen,1973,25(2-3):347-356.
    [28]常洋洋.饮用水源水典型混合物的氯化致毒机制与控制[D].北京:中国科学院生态环境研究中心,2017.69-78.
    [29]Rodil R,Quintana J B,López-Mahía P,et al.Multiclass determination of sunscreen chemicals in water samples by liquid chromatography-tandem mass spectrometry[J].Analytical Chemistry,2008,80(4):1307-1315.
    [30]Altaf M,Akram M,Kabir-ud-Din.Water-soluble colloidal manganese dioxide as an oxidant for L-tyrosine in the absence and presence of non-ionic surfactant TX-100[J].Colloids and Surfaces B:Biointerfaces,2009,73(2):308-314.
    [31]Malik M A,Basahel S N,Obaid A Y,et al.Oxidation of tyrosine by permanganate in presence of cetyltrimethylammonium bromide[J].Colloids and Surfaces B:Biointerfaces,2010,76(1):346-353.
    [32]Stone A T,Ulrich H J.Kinetics and reaction stoichiometry in the reductive dissolution of manganese(IV)dioxide and co(Ⅲ)oxide by hydroquinone[J].Journal of Colloid and Interface Science,1989,132(2):509-522.
    [33]张弘,殷浩文,周忠良,等.新兴污染物BP-3和BP-4的好氧生物降解性能[J].化工环保,2014,34(5):423-428.Zhang H,Yin H W,Zhou Z L,et al.Aerobic biodegradability of emerging contaminants BP-3 and BP-4[J].Environmental Protection of Chemical Industry,2014,34(5):423-428.
    [34]崔馨文.锰氧化细菌的分离鉴定及其锰氧化能力的研究[D].哈尔滨:哈尔滨工业大学,2014.25-50.
    [35]王文明.深海锰氧化细菌Brachybacterium sp.Mn32对Mn(Ⅱ)的氧化及生物锰氧化物对Zn(Ⅱ)、Ni(Ⅱ)的吸附研究[D].武汉:华中农业大学,2008.24-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700