基于介质变黏–弹特征的深海柱塞泵压力控制特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pressure Control Characteristics for Deep-sea Piston Pumps Depend on Variable Viscosity–Elasticity Properties of Hydraulic Oil
  • 作者:曹学鹏 ; 周钊强 ; 曾致 ; 卫昌辰
  • 英文作者:CAO Xuepeng;ZHOU Zhaoqiang;ZENG Zhihao;WEI Changchen;College of Construction Machinery,Chang'an Univ.;National Eng.Lab.for Highway Maintenance Equipment;Zhucheng Ollin Automobile Factory of Beijing Foton Co.Ltd.;
  • 关键词:变黏度–动刚度模型 ; 控制模型 ; 影响机理
  • 英文关键词:variable viscosity–dynamic stiffness model;;control model;;influence mechanism
  • 中文刊名:SCLH
  • 英文刊名:Advanced Engineering Sciences
  • 机构:长安大学工程机械学院;公路养护装备国家工程实验室;北汽福田诸城奥铃汽车厂;
  • 出版日期:2019-02-22 14:38
  • 出版单位:工程科学与技术
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金资助项目(51509006);; 中央高校基本科研业务费资助项目(300102258201);; 陕西省交通厅科研资助项目(18-16K)
  • 语种:中文;
  • 页:SCLH201902020
  • 页数:9
  • CN:02
  • ISSN:51-1773/TB
  • 分类号:155-163
摘要
为预测变深环境下柱塞泵压力控制性能变化规律,基于水下动黏度–变刚度介质模型建立深海柱塞泵压力控制系统模型。从稳定性、快速响应性与稳态误差等3个方面对系统控制性能进行了综合分析,得出变深环境下,只考虑黏度影响时,系统稳定性指标和动态响应参数由初态值,即相位裕度59.4°、幅值裕度8.77 dB、上升时间0.045 s、稳态误差3.4%,分别增加至138.4°、23.4 dB、0.28 s、7.4%;只考虑刚度影响时,各参数由初态值分别减少为42.6°、23.4 dB、0.038 s、1.2%;考虑黏度–刚度复合作用时,各参数由初态值分别增加至137.6°、23.1 dB、0.265 s、7.3%。结果表明:变深环境下只考虑黏度影响与考虑黏度–刚度复合作用时,系统稳定性均随水深的增加而增加,快速响应性与稳态误差均随水深的增加而下降;只考虑刚度影响时,相关特性的变化趋势刚好相反;并得出在0~1 000 m、1 000~7 000 m两海层下泵压力控制系统可分别视作变黏度–动刚度系统、变黏度–定刚度系统。最后,通过模拟变深环境下泵的动静性能试验,验证了上述理论分析结果的合理性和有效性。
        In order to predict the changing rule of pressure control performance of axial piston pump under oceanic environment, the pressure control system model of piston pump was established based on the underwater hydraulic oil viscosity–stiffness model. The system control performance was comprehensively analyzed from the aspects of stability, rapid response and control accuracy, and the results showed that if the variation factor was the viscosity, the parameters of the system phase margin, amplitude margin, rise time, and steady state were increased from the initial values of 59.4°, 8.77 dB, 0.045 s, and 3.4% to 138.4°, 23.4 dB, 0.28 s, and 7.4%, respectively. If the variation factor was stiffness, the parameters of the three characteristics were reduced from initial values to 42.6°, 23.4 dB, 0.038 s, and 1.2%, respectively.When considering the composite effects of viscosity and stiffness, the parameters of the three characteristics were increased from the initial values to 137.6°, 23.1 dB, 0.265 s, and7.3% respectively. The analysis results showed that when the effects of viscosity and considering the comprehensive effects of viscosity–stiffness,the stability of the system increased with the increase of water depth, meanwhile the rapid response and control precision decreased with the increase of water depth. When considering the effects of stiffness, the changing trend of the three characteristics were quite opposite. It was pointed out that the control systems can be regarded as variable viscosity–dynamic stiffness control systems and variable viscosity–fixed stiffness control systems at the sea level of 0~1 000 m and 1 000~7 000 m, respectively. Finally, the experimental results further confirmed the results of the theoretical analysis.
引文
[1]三浦敏,刘鸿春.深潜器用液压装置[J].机电设备,1980(6):33-42.
    [2]Koralewski J.Influence of hydraulic oil viscosity on the volumetric losses in a variable capacity piston pump[J].Polish Maritime Research,2011,18(3):55-65.
    [3]Kazama T.Comparison of temperature measurements and thermal characteristics of hydraulic piston,vane,and gear pumps[J].Mechanical Engineering Journal,2015,2(3):14-00542-14-00542.
    [4]Wang Shifu,Ma Jungong,Wang Zhanling.Modeling and simulation of airborne intelligent hydraulic pump[J].China Mechanical Engineering,2004,15(5):398-401.[王世富,马俊功,王占林.机载智能液压泵的建模与仿真[J].中国机械工程,2004,15(5):398-401.]
    [5]Wang Jing,Gong Guofang,Yang Huagong.Control of bulkmodulus of oil in hydraulic systems[C]//Procaedings of2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.New York:IEEE,2008:1390-1395.
    [6]Cao X P,Ye M,Deng B,et al.LVP modeling and dynamic characteristics prediction of a hydraulic power unit in deepsea[J].China Ocean Engineering,2013,27(1):17-32.
    [7]Gold P W,Schmidt A,Dicke H,et al.Viscosity-pressuretemperature behaviour of mineral and synthetic oils[J].Journal of Synthetic Lubrication,2001,18(1):51-79.
    [8]Karjalainen J P,Karjalainen R,Huhtala K.Measuring and modelling hydraulic fluid dynamics at high pressureAccurate and simple approach[J].International Journal of Fluid Power,2012,13(2):51-59.
    [9]Li Yanmin.Research on the pressure compensation for external hydraulic systems of submersible vehicles[D].Hangzhou:Zhejiang University,2005.[李延民.潜器外置设备液压系统的压力补偿研究[D].杭州:浙江大学.2005.]
    [10]Cao Xuepeng,Zhou Zhaoqiang.Study on change rules of oil viscosity characteristics based on deepening environment model[J].Lubrication Engineering,2017,42(7):1-6.[曹学鹏,周钊强.基于变深环境模型的介质黏度特性变化规律研究[J].润滑与密封,2017,42(7):1-6.]
    [11]Cao Xuepeng,Zhang Cuihong,Deng Bin.Research on pressure compensation dynamic characteristics of deep ocean oil storage system[J].Ocean Technology,2011,30(1):83-87.[曹学鹏,张翠红,邓斌,等.深海下储油器系统的压力补偿动态特性研究[J].海洋技术学报,2011,30(1):83-87.]
    [12]许益民.电液比例控制系统分析与设计[M].北京:机械工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700