β_3肾上腺素能受体通过微小RNA对慢性心力衰竭大鼠左心房肌L型钙离子通道的调控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:β_3 adrenergic receptor regulates left atrial L-type calcium channel in chronic heart failure rats via miRNA
  • 作者:赵强 ; 邹月柳 ; 邹筱冬 ; 邓春玉 ; 李彪 ; 曾芳
  • 英文作者:Zhao Qiang;Zou Yueliu;Zou Xiaodong;Deng Chunyu;Li Biao;Zeng Fang;Department of Cardiology,Affiliated Guangzhou Red Cross Hospital of Jinan University Medical School;
  • 关键词:受体 ; 肾上腺素能β3 ; 心力衰竭 ; 钙通道 ; L型 ; 心房 ; 微RNAs
  • 英文关键词:receptors,adrenergic,beta-3;;heart failure;;calcium channels,L-type;;heart atrium;;microRNAs
  • 中文刊名:LNXG
  • 英文刊名:Chinese Journal of Geriatric Heart Brain and Vessel Diseases
  • 机构:暨南大学医学院附属广州红十字会医院心血管内科;广东省人民医院医学研究中心;
  • 出版日期:2019-01-15
  • 出版单位:中华老年心脑血管病杂志
  • 年:2019
  • 期:v.21
  • 基金:广东省自然科学基金(2015A030313734);; 广东省科技计划(2014A020212005);; 广州市医药卫生科技项目(20151A011020)
  • 语种:中文;
  • 页:LNXG201901017
  • 页数:5
  • CN:01
  • ISSN:11-4468/R
  • 分类号:73-77
摘要
目的探讨β_3肾上腺素能受体(β_3-AR)对慢性心力衰竭(CHF)大鼠左心房肌L型Ca2+通道亚单位α2δ-2编码基因CACNA2D2的调控是否与微小RNA(miRNA)-1及miRNA-328存在关联。方法 22只雄性Wistar大鼠随机选6只为正常对照组(NC组),另16只采用皮下注射异丙肾上腺素建立CHF动物模型,将存活的12只大鼠再随机分为CHF组6只和BRL组(在大鼠尾静脉注射β_3-AR特异性激动剂BRL-37344) 6只。采用超声心动图检测大鼠左心房内径(LAD)、左心房射血分数(LAEF)及LVEF。采用苏木精-伊红染色检测大鼠左心房肌病理学变化。采用实时荧光定量PCR检测大鼠左心房肌β_3-AR、CACNA2D2以及miRNA-1、miRNA-328表达水平。结果BRL组大鼠LAD显著大于NC组和CHF组[(4. 42±0. 15) mm vs (3. 50±0. 21) mm和(4. 09±0. 17) mm,P <0. 01]; BRL组LAEF显著低于NC组和CHF组[(34. 91±1. 51)%vs (59. 89±3. 17)%和(40. 09±0. 95)%,P <0.01]。与CHF组比较,BRL组大鼠左心房肌细胞水肿进一步加重,可见明显肥大细胞等病理学改变更显著。与NC组比较,CHF组大鼠左心房肌β3-AR、CACNA2D2、miRNA-1及miRNA-328表达上调(P <0. 01);与CHF组比较,BRL组大鼠左心房肌β3-AR、CACNA2D2、miRNA-1及miRNA-328表达进一步上调(P <0. 01)。miRNA-1、miRNA-328、CACNA2D2与β3-AR表达呈正相关(r=0. 870、0. 904、0. 911,P <0. 01); CACNA2D2与miRNA-1、miRNA-328表达呈正相关(r=0. 880、0. 954,P <0. 01)。结论β3-AR对左心房CACNA2D2的正性调控可能与miRNA-1、miRNA-328存在关联。
        Objective To study whether the regulatory effect of β_3-adrenergic receptor( β_3-AR) on left atrial L-type calcium channel is related with miRNA-1 and miRNA-328 in chronic heart failure( CHF)rats. Methods Twenty-two male Wistar rats were divided into control group( n = 6) and model group( n= 16). A CHF model of rats was established by subcutaneous injection with isoprenaline. The surviving rats in model group were further divided into CHF group( n = 6) and BRL group( n = 6). The LAD,LAEF and LVEF were measured by echocardiography. The pathological changes of left atrium were detected with HE staining. The expressions of β_3-AR,CACNA2 D2,miRNA-1 and miRNA-328 in left atrium were detected by RT-qPCR. Results The LAD was significantly longer while the LAEF was significantly lower in BRL group than in control group and CHF group( 4. 42 ± 0. 15 mm vs 3. 50 ± 0. 21 mm and 4. 09± 0. 17 mm,P < 0. 01; 34. 91% ± 1. 51% vs 59. 89% ± 3. 17% and 40. 09% ± 0. 95%,P < 0. 01). The pathological changes of left atrium were more significant in BRL group than in CHF group and the expression levels of β_3-AR,CACNA2 D2,miRNA-1 and miRNA-328 were significantly higher in CHF group and BRL group than in control group and in BRL group than in CHF group( P < 0. 01). The expression levels of miRNA-1,miRNA-328,CACNA2 D2 were positively related with those of β_3-AR while the expression levels of CACNA2 D2 were positively related with those of miRNA-1 and miRNA-328( r = 0. 870、0. 904、0.911,P < 0. 01; r = 0. 880、0. 954,P < 0. 01). Conclusion The regulatory effect of β_3-AR on expression of CACNA2 D2 in left atrium is related with the expressions of miRNA-1 and miRNA-328.
引文
[1] Ma Y,Bai F,Qin F,et al. Catheter ablation for treatment of patients with atrial fibrillation and heart failure:a meta-analysis of randomized controlled trials[J]. BMC Cardiovasc Disord,2018,18(1):165. DOI:10. 1186/s12872-018-0904-3.
    [2] Zhou T,Han Z,Gu J,et al. Angiotensin-converting enzyme-2overexpression improves atrial electrical remodeling through TRPM7 signaling pathway[J]. Oncotarget,2017,8(45):78726-78733. DOI:10. 18632/oncotarget. 20221.
    [3] Nattel S,Harada M. Atrial remodeling and atrial fibrillation:recent advances and translational perspectives[J]. J Am Coll Cardiol,2014,63(22):2335-2345. DOI:10. 1016/j. jacc. 2014.02. 555.
    [4] Zhao Q,Zeng F,Liu JB,et al. Upregulation ofβ3-adrenergic receptor expression in the atrium of rats with chronic heart failure[J]. J Cardiovasc Pharmacol Ther,2013,18(2):133-137.DOI:10. 1177/1074248412460123.
    [5] Li B,Zhao Q,Wang LX,et al. Effect ofβ3-adrenergic receptor on atrial L-type Ca2+current in rats with chronic heart failure[J].Heart Lung Circ,2014,23(4):369-377. DOI:10. 1016/j. hlc.2013. 08. 008.
    [6] van den Berg NWE,Kawasaki M,Berger WR,et al. Micro RNAs in atrial fibrillation:from expression signatures to functional implications[J]. Cardiovasc Drugs Ther,2017,31(3):345-365.DOI:10. 1007/s10557-017-6736-z.
    [7] Yang J,Liu Y,Fan X,et al. A pathway and network review onβ-adrenoceptor signaling andβblockers in cardiac remodeling[J].Heart Fail Rev,2014,19(6):799-814. DOI:10. 1007/s10741-013-9417-4.
    [8] Yang N,Shi XL,Zhang BL,et al. The trend ofβ3-adrenergic receptor in the development of septic myocardial depression:a lipopolysaccharide-induced rat septic shock model[J]. Cardiology,2018,139(4):234-244. DOI:10. 1159/000487126.
    [9] Zhang R,Kang X,Wang Y,et al. Effects of carvedilol on ventricular remodeling and the expression ofβ3-adrenergic receptor in a diabetic rat model subjected myocardial infarction[J]. Int J Cardiol,2016,222:178-184. DOI:10. 1016/j. ijcard. 2016. 07.188.
    [10] Skeberdis VA,Gendviliene V,Zablockaite D,et al.β3-adrenergic receptor activation increases human atrial tissue contractility and stimulates the L-type Ca2+current[J]. J Clin Invest,2008,118(9):3219-3227. DOI:10. 1172/JCI32519.
    [11] Christ T,Molenaar P,Klenowski PM,et al. Human atrialβ1 L-adrenoceptor but notβ3-adrenoceptor activation increases force and Ca2+current at physiological temperature[J]. Br J Pharmacol,2011,162(4):823-839. DOI:10. 1111/j. 1476-5381. 2010.00996. x.
    [12] Yu J,Li W,Li Y,et al. Activation ofβ3-adrenoceptor promotes rapid pacing-induced atrial electrical remodeling in rabbits[J].Cell Physiol Biochem,2011,28(1):87-96. DOI:10. 1159/000331717.
    [13]张红明,何青松,韩雅玲.微小RNA与心房颤动关系的研究进展[J].中华老年心脑血管病杂志,2016,18(2):208-210.DOI:10. 3969/j. issn. 1009-0126. 2016. 02. 029
    [14] Jia X,Zheng S,Xie X,et al. MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expression:an atrial tachypacing rabbit model[J]. PLo S One,2013,8(12):e85639. DOI:10. 1371/journal. pone.0085639.
    [15] Terentyev D,Belevych AE,Terentyeva R,et al. MiR-1 overexpression enhances Ca2+release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56αand causing CaMKⅡ-dependent hyperphosphorylation of RyR2[J]. Circ Res,2009,104(4):514-521. DOI:10. 1161/CIRCRESAHA. 108.181651.
    [16] Soeki T,Matsuura T,Bando S,et al. Relationship between local production of microRNA-328 and atrial substrate remodeling in atrial fibrillation[J]. J Cardiol,2016,68(6):472-477.DOI:10. 1016/j. jjcc. 2015. 12. 007.
    [17] Li C,Li X,Gao X,et al. MicroRNA-328 as a regulator of cardiac hypertrophy[J]. Int J Cardiol,2014,173(2):268-276. DOI:10. 1016/j. ijcard. 2014. 02. 035.
    [18] Li Z,Wang X,Wang W,et al. Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation:TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C[J]. J Mol Cell Cardiol,2017,108:73-85. DOI:10. 1016/j. yjmcc. 2017. 05. 009.
    [19] Lu Y,Zhang Y,Wang N,et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation[J]. Circulation,2010,122(23):2378-2387. DOI:10. 1161/CIRCULATIONAHA. 110. 958967.
    [20] Hadi T,Barrichon M,Mourtialon P,et al. Biphasic Erk1/2 activation sequentially involving Gs and Gi signaling is required inβ3-adrenergic receptor-induced primary smooth muscle cell proliferation[J]. Biochim Biophys Acta,2013,1833(5):1041-1051.DOI:10. 1016/j. bbamcr. 2013. 01. 019.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700