基于激光测距的月球探测重载六足机器人自主避障控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Autonomous Obstacle Avoidance Control of Heavy-Buty Hexapod Robot for Lunar Exploration Based on Laser Ranging
  • 作者:刘宇飞 ; 丁亮 ; 高海波 ; 刘振 ; 胡艳明 ; 何玉庆 ; 邓宗全
  • 英文作者:LIU Yu-fei;DING Liang;GAO Hai-bo;LIU Zhen;HU Yan-ming;HE Yu-qing;DENG Zong-quan;State Key Laboratory of Robotics and System,Harbin Institute of Technology;Robotics Laboratory,Shenyang Institute of Automation,Chinese Academy of Sciences;
  • 关键词:六足机器人 ; 月球探测 ; 地形建模 ; 避障
  • 英文关键词:Hexapod robot;;Lunar exploration;;Terrain modeling;;Obstacle avoidance
  • 中文刊名:YHXB
  • 英文刊名:Journal of Astronautics
  • 机构:哈尔滨工业大学机器人技术与系统国家重点实验室;中国科学院沈阳自动化研究所机器人学重点实验室;
  • 出版日期:2018-12-30
  • 出版单位:宇航学报
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金(51575120);; “111”创新引智计划(B07018);; 自然基金委创新研究群体项目(51521003);; 哈尔滨工业大学重大重点科技创新培育支持计划(HIT.MKSTISP.2016 05);; 哈尔滨市杰出青年人才项目(2014RFYXJ001)
  • 语种:中文;
  • 页:YHXB201812010
  • 页数:10
  • CN:12
  • ISSN:11-2053/V
  • 分类号:71-80
摘要
月面未知环境下具有高承载力的六足移动机器人是月球探测中不可或缺的装备。六足机器人虽然可以借助足地接触信息和姿态信息在不平坦路面行走,在遇到较小障碍物时可以做出适当的反射动作,但当遇到无法逾越的障碍物时,基于视觉信息实现腿式机器人避障运动是非常重要的。针对电驱动六边形对称分布的六足机器人,基于激光测距仪的信息实现了模拟月壤地面的地形建模,提出基于虚拟机体模型的自主避障策略,获得最优可行方向和运动最短距离,规划了实时避障的机体和足端运动轨迹。实验结果表明,六足机器人可以实时、准确地跟踪避障策略得到实时偏航角度,实现了机器人在未知环境下的自主避障运动,为月球探测重载足式机器人研究奠定了基础。
        The hexapod mobile robot,which can bear the heavy load and traverse in the unknown environment of the lunar surface,is a necessary device for lunar exploration.Although the hexapod robot walking over a rugged terrain can be accomplished by employing the ground contact and attitude information,and can make a reflex action when encountering the small obstacles,however,the obstacle avoidance based on visual information is an important issue in the field of the legged locomotion when faced with the insurmountable obstacles.For an electrically-driven and radially-symmetrical hexapod robot,the terrain modeling for the lunar surface is based on the information from the laser range finder.In this paper,a virtual trunk body model is presented to achieve the autonomous obstacle avoidance strategy in the unknown environment,and the real-time optimal feasible directions and minimum distance are acquired to avoid the obstacles.The path trajectory of the trunk body and foot trajectories are planned to walk toward the feasible direction.The experimental result shows that the hexapod robot can track the yaw angle and in real time accurately from the obstacle avoidance method to achieve the obstacle avoidance autonomously in the unknown environment.The key techniques will lay a foundation for the research of the heavy-duty multi-legged robots for lunar exploration.
引文
[1]Howard A.Real-time stereo visual odometry for autonomous ground vehicles[C].IEEE/RSJ International Conference on Intelligent Robots and Systems,Nice,France,September 22-26,2008.
    [2]Ohki T,Nagatani K,Yoshida K.Path planning for mobile robo on rough terrain based on sparse transition cost propagation in extended elevation maps[C].IEEE International Conference on Mechatronics and Automation,Takamatsu,Japan,August 4-7,2013.
    [3]Stelzer A,Hirschmüler H,G9rner M.Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain[J].International Journal of Robotics Research,2012,31:381-402.
    [4]Belter D,Skrzypczyński P.Rough terrain mapping and classification for foothold selection in a walking robot[J].Journal of Field Robotics,2011,28(4):497-528.
    [5]Krotkov E P,Simmons R G,Whittaker W L.Ambler:Performance of a six-legged planetary rover[J].Acta Astronautica,1992,35(1):75-81.
    [6]Wilcox B H,Litwin T E,Biesiadecki J J,et al.ATHLETE:Acargo handling and manipulation robot for the moon[J].Journal of Field Robotics,2007,24(5):421-434.
    [7]SunSpiral V,Wheeler D W,Chavez-Clemente D,et al.Development and field testing of the footall planning system for the ATHLETE robots[J].Journal of Field Robotics,2012,29(3):483-505.
    [8]Chilian A,Hirschmüler H,G9rner M.Multisensor data fusion for robust pose estimation of a six-legged walking robot[C].IEEE/RSJ International Conference on Intelligent Robots and Systems,San Francisco,CA,USA,September 25-30,2011.
    [9]Okada Y,Nagatani K,Yoshida K,et al.Shared autonomy system for tracked vehicles on rough terrain based on continuous three-dimensional terrain scanning[J].Journal of Field Robotics,2011:875-893.
    [10]Lima P,Bonarini A,Machado C,et al.Omni-directional catadioptric vision for soccer robots[J].Robotics&Autonomous Systems,2001,36(2-3):87-102.
    [11]李云翀,何克忠.基于激光雷达的室外移动机器人避障与导航新方法[J].机器人,2006,28(3):275-278.[Li Yunchong,He Ke-zhong.A novel obstacle avoidance and navigation method for outdoor mobile robot based on laser radar[J].Robot,2006,28(3):275-278.]
    [12]徐玉华,张崇巍,徐海琴.基于激光测距仪的移动机器人避障新方法[J].机器人,2010,32(2):179-183.[Xu Yu-hua,Zhang Chong-wei,Xu Hai-qin.A new obstacle avoidance method for mobile robot based on laser range finder[J].Robot,2010,32(2):179-183.]
    [13]郝刚涛,杜小平,赵继广,等.单目-无扫描3D激光雷达融合的非合作目标相对位姿估计[J].宇航学报,2015,36(10):1178-1186.[Hao Gang-tao,Du Xiao-ping,Zhao Jiguang,et al.Relative pose estimation of noncooperative target based on fusion of monocular vision and scannerless 3D LIDAR[J].Journal of Astronautics,2015,36(10):1178-1186.]
    [14]Deng Z Q,Liu Y Q,Ding L,et al.Motion planning and simulation verification of a hydraulic hexapod robot based on reducing energy/flow consumption[J].Journal of Mechanical Science and Technology,2015,29(10):4427-4436.
    [15]Belter D,Skrzypczyński P,et al.Adaptive motion planning for autonomous rough terrain traversal with a walking robot[J].Journal of Field Robotics,2016,33(3):337-370.
    [16]羊帆,张国良,田琦,等.基于避障伪距离的自由漂浮空间机器人规划-跟踪一体化控制[J].宇航学报,2018,39(2):229-238.[Yang Fan,Zhang Guo-liang,Tian Qi,et al.Trajectory planning-tracking integrated control for a 6R freefloating space robot via obstacle avoidance pseudo-distance[J].Journal of Astronautics,2018,39(2):229-238.]
    [17]居鹤华,崔平远,崔祜涛,等.行为控制月球车的虚拟主体避障技术[J].宇航学报,2003,24(5):515-517.[Ju Hehua,Cui Ping-yuan,Cui Hu-tao,et al.Virtual agent-based obstacle avoidance for behavior control lunar rover[J].Journal of Astronautics,2003,24(5):515-517.]
    [18]Fankhauser P,Bloesch M,Gehring C,et al.Robot-centric elevation mapping with uncertainty estimates[C].17th International Conference on Climbing and Walking Robots,Poznan,Poland,July 21-23,2014.
    [19]Cremean L B,Murray R M.Uncertainty-based sensor fusion of range data for real-time digital elevation mapping(RTDEM)[J].2004.
    [20]Xun C,Gao F,Qi C K,et al.Obstacle avoidance for a hexapod robot in unknown environment[J].Science China:Technological Sciences,2017,60(6):818-831.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700