大花红景天谷胱甘肽 S-转移酶基因的分离与鉴定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Isolation and Investigation of Glutathione S-transferase Genes in Tibet Rhodiola renulata
  • 作者:张力鹏 ; 于得水 ; 滕彦娇 ; 陈成彬 ; 宋文芹
  • 英文作者:ZHANG Lipeng;YU Deshui;TENG Yanjiao;CHEN Chengbin;SONG Wenqin;College of Life Science,Nankai University;
  • 关键词:大花红景天 ; GST ; 生物信息学 ; qRT-PCR ; 表达特征
  • 英文关键词:Rhodiola crenulata;;GST;;bioinformation;;qRT-PCR;;expression pattern
  • 中文刊名:BFYY
  • 英文刊名:Northern Horticulture
  • 机构:南开大学生命科学学院;
  • 出版日期:2019-03-28
  • 出版单位:北方园艺
  • 年:2019
  • 期:No.429
  • 语种:中文;
  • 页:BFYY201906004
  • 页数:10
  • CN:06
  • ISSN:23-1247/S
  • 分类号:24-33
摘要
以西藏大花红景天为试材,利用生物信息学和实时荧光定量PCR技术对谷胱甘肽S-转移酶(GST)基因家族中的11个成员进行分析,以期为红景天属GST家族基因的功能研究提供参考。结果表明:基于蛋白质序列比对可以将11个大花红景天RcGSTs基因分为6个亚组,分别为tau类(RcGSTU1、RcGSTU2、RcGSTU3);phi类(RcGSTF1、RcGSTF2、RcGSTF3、RcGSTF4);lambd类RcGSTL;微粒体类RcGSTM;theta类RcGST1;zeta类RcGSTZ。在线网站分析结果显示仅RcGSTM具有跨膜结构域,并定位于细胞膜,其它RcGSTs均无跨膜结构域并定位于细胞质。组织特异性与胁迫诱导表达模式结果表明,RcGSTs基因具有不同的组织表达特异性;低温胁迫下4个基因表达水平上调,7个基因下调;且脱落酸(ABA)可以诱导RcGSTs基因表达。
        The glutathione S-transferase(GST) gene family members were analysis by bioinformation and qRT-PCR for Tibet Rhodiola crenulata,in order to lay a foundation for the further studies of function about GST family genes in Rhodiola.The results showed that 11 RcGSTs genes were classified into six subgroups according to protein sequence identity contained tau(RcGSTU1,RcGSTU2,RcGSTU3),phi(RcGSTF1,RcGSTF2,RcGSTF3,RcGSTF4),lambd(RcGSTL),microsomal(RcGSTM),theta(RcGST1),zeta(RcGSTZ).All RcGSTs genes located in cytoplasm and without transmembrane domain expect RcGSTM.The expression patterns for tissue and stresses presented that RcGSTs had different tissue expression specificity.Under cold stress,4 of 11 RcGSTs expression levels were up-regulation and 7 of 11 RcGSTs were down-regulation.For abscisic acid stresses,all RcGSTs were induced the expression levels.
引文
[1] HAYES J D,PULFORD D J.The glutathione S-transferase supergene family:Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance[J].Crc Critical Reviews in Biochemistry,1995,30(6):521-600.
    [2] HAN X M,YANG Z L,LIU Y J,et al.Genome-wide profiling of expression and biochemical functions of the Medicago glutathione S-transferase gene family[J].Plant Physiol Biochem,2018,126:126-133.
    [3] DIXON D P,EDWARDS R.Roles for stress-inducible lambda glutathione transferases in flavonoid metabolism in plants as identified by ligand fishing[J].Journal of Biological Chemistry,2010,285(47):36322-36329.
    [4] LAN T,YANG Z L,XUE Y,et al.Extensive functional diversification of the Populus glutathione S-transferase supergene family[J].Plant Cell,2009,21(12):3749-3766.
    [5] OAKLEY A J.Glutathione transferases:New functions[J].Current Opinion in Structural Biology,2005,15(6):716-723.
    [6] DU J,REN J,YE X,et al.Genome-wide identification and expression analysis of the glutathione S-transferase (GST) family under different developmental tissues and abiotic stresses in Chinese cabbage (Brassica rapa ssp.pekinensis)[J].PeerJ Preprints,2018(6):1-23.
    [7] ABDUL KAYUM M,NATH U K,PARK J I,et al.Genome-wide identification,characterization,and expression profiling of glutathione S-transferase (GST) family in pumpkin reveals likely role in cold-stress tolerance[J].Genes (Base l),2018,9(2):1-21.
    [8] LABROU N E,PAPAGEORGIOU A C,PAVLI O,et al.Plant GSTome:Structure and functional role in xenome network and plant stress response[J].Curr Opin Biotechnol,2015(32):186-194.
    [9] ROXAS V P,LODHI S A,GARRETT D K,et al.Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase[J].Plant & Cell Physiology,2000,41(11):1229.
    [10] ROXAS V P,JR S R,ALLEN E R,et al.Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress[J].Nature Biotechnology,1997,15(10):988.
    [11] 江董丽,才华,端木慧子,等.大豆GST基因家族全基因组筛选、分类和表达[J].分子植物育种,2013,4(5):465-475.
    [12] 成彦丽,王曦,司卫杰,等.鹅掌楸属GST家族基因的克隆与表达分析[J].西北植物学报,2018(3):445-455.
    [13] 金雪花,洪艳,黄河,等.瓜叶菊谷胱甘肽转移酶基因GST的分离及表达分析[J].园艺学报,2013,40(6):1129-1138.
    [14] 张亚真,韦康,王丽鸳,等.基于转录组测序对茶树GST基因表达的研究[J].茶叶科学,2016,36(5):513-522.
    [15] ZHANG J Q,MENG S Y,WEN J,et al.DNA barcoding of Rhodiola (Crassulaceae):A case study on a group of recently diversified medicinal plants from the Qinghai-Tibetan Plateau[J].PLoS One,2015,10(3):1-15.
    [16] 国家药典委员会.中国药典:一部[M].北京:中国医药科技出版社,2015:154.
    [17] LAI M C,LIN J G,PAI P Y,et al.Effects of Rhodiola crenulata on mice hearts under severe sleep apnea[J].BMC Complement Altern Med,2015(15):198.
    [18] QU Z Q,ZHOU Y,ZENG Y S,et al.Protective effects of a Rhodiola crenulata extract and salidroside on hippocampal neurogenesis against streptozotocin-induced neural injury in the rat[J].PLoS One,2012,7(1):1-17.
    [19] KOSANOVIC D,TIAN X,PAK O,et al.Rhodiola:An ordinary plant or a promising future therapy for pulmonary hypertension? a brief review[J].Pulm Circ,2013,3(3):499-506.
    [20] ZHANG J Q,MENG S Y,WEN J,et al.Phylogenetic relationships and character evolution of Rhodiola (Crassulaceae) based on nuclear ribosomal ITS and plastid trnL-F and psbA-trnH sequences[J].Systematic Botany,2014,39(2):441-451.
    [21] FU Y,LI L,HAO S,et al.Draft genome sequence of the Tibetan medicinal herb Rhodiola crenulata[J].Gigascience,2017,6(6):1-5.
    [22] LAN X,CHANG K,ZENG L,et al.Engineering salidroside biosynthetic pathway in hairy root cultures of Rhodiola crenulata based on metabolic characterization of tyrosine decarboxylase[J].PLoS One,2013,8(10):e75459.
    [23] ZHANG J Q,MENG S Y,ALLEN G A,et al.Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae)[J].Mol Phylogenet Evol,2014,77:147-158.
    [24] YANG M,ZHANG Y,ZHANG H,et al.Identification of MsHsp20 gene family in Malus sieversii and functional characterization of MsHsp16.9 in heat tolerance[J].Front Plant Sci,2017(8):1761.
    [25] 赵风治,王雪莹,王欣蕾,等.花椰菜BoPGIP2基因的克隆与表达水平分析[J].北方园艺,2016(7):77-84.
    [26] 张力鹏,张银兴,宋文芹,等.红景天属植物叶片RNA高效提取的方法[J].南开大学学报(自然科学版),2017(6):48-53.
    [27] WEI T,DENG K,GAO Y,et al.Arabidopsis DREB1B in transgenic Salvia miltiorrhiza increased tolerance to drought stress without stunting growth[J].Plant Physiol Biochem,2016,104:17-28.
    [28] WEI T,DENG K,LIU D,et al.Ectopic expression of DREB transcription factor,AtDREB1A,confers tolerance to drought in transgenic Salvia miltiorrhiza[J].Plant Cell Physiol,2016,57(8):1593-1609.
    [29] WEI T,DENG K,ZHANG Q,et al.Modulating AtDREB1C expression improves drought tolerance in Salvia miltiorrhiza[J].Front Plant Sci,2017(8):52.
    [30] MUHAMMAD K,AHMAD W.A novel L-ascorbate peroxidase 6 gene,ScAPX6,plays an important role in the regulation of response to biotic and abiotic stresses in sugarcane[J].Frontiers in Plant Science,2017(8):1-13.
    [31] GAO F,CHEN J,MA T,et al.The glutathione peroxidase gene family in Thellungiella salsuginea:Genome-wide identification,classification,and gene and protein expression analysis under stress conditions[J].Int J Mol Sci,2014,15(2):3319-3335.
    [32] BINH LT,OONO K.Molecular cloning and characterization of genes related to chilling tolerance in rice[J].Plant Physiology,1992,99(3):1146-1150.
    [33] EDWARDS R,DIXON D P,WALBOT V.Plant glutathione S-transferases:Enzymes with multiple functions in sickness and in health[J].Trends in Plant Science,2000,5(5):193-198.
    [34] 陈明辉,张志录,佟伟霜,等.低温胁迫下脱落酸对金钗石斛膜透性和内源激素的影响[J].北方园艺,2015(23):74-78.
    [35] 陆敏,陆贵清.脱落酸与植物非生物逆境抗性研究进展[J].北方园艺,2014(8):184-188.
    [36] 张楠,洪永聪,王玉,等.脱落酸和水杨酸对越冬期茶树叶片抗寒生理指标的影响[J].北方园艺,2010(22):21-24.
    [37] 王强,阮晓,李荷迪,等.珍稀药用资源植物红景天研究现状、问题与对策[J].自然资源学报,2007,22(6):880-889.
    [38] 王强,阮晓,方兰,等.资源植物红景天研究综述[J].新疆农业大学学报,2002,25(4):57-62.
    [39] GRECH-BARAN M,SYKLOWSKA-BARANEK K,PIETROSIUK A.Biotechnological approaches to enhance salidroside,rosin and its derivatives production in selected Rhodiola spp.in vitro cultures[J].Phytochem Rev,2015,14(4):657-674.
    [40] XIN J,ZHANG R C,WANG L,et al.Researches on transcriptome sequencing in the study of traditional Chinese medicine[J].Evid Based Complement Alternat Med,2017(1):1-7.
    [41] SORANZO N,GORLA MS,MIZZI L,et al.Organisation and structural evolution of the rice glutathione S-transferase gene family[J].Molecular Genetics & Genomics,2004,271(5):511-521.
    [42] JAKOBSSON P J,MORGENSTERN R,MANCINI J,et al.Common structural features of mapeg:A widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism[J].Protein Science,2010,8(3):689-692.
    [43] MALNOY M,REYNOIRD J P,BOREJSZAWYSOCKA E E,et al.Activation of the pathogen-inducible Gst1 promoter of potato after elicitation by Venturia inaequalis and Erwinia amylovora in transgenic apple (Malus×domestica)[J].Transgenic Research,2006,15(1):83-93.
    [44] 雒雅婧,李杰,张爽,等.植物启动子研究进展[J].北方园艺,2015(22):186-189.
    [45] QIU P.Recent advances in computational promoter analysis in understanding the transcriptional regulatory network[J].Biochemical and Biophysical Research Communications,2003,309(3):495-501.
    [46] FALTIN Z,HOLLAND D,VELCHEVA M,et al.Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation[J].Plant Cell Physiol,2010,51(7):1151-1162.
    [47] SUZUKI N,KOUSSEVITZKY S,MITTLER R,et al.ROS and redox signalling in the response of plants to abiotic stress[J].Plant Cell Environ,2012,35(2):259-270.
    [48] MILLER G,SHULAEV V,MITTLER R.Reactive oxygen signaling and abiotic stress[J].Physiol Plant,2008,133(3):481-489.
    [49] ZHAO G R,ZHANG H M,YE T X,et al.Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B[J].Food & Chemical Toxicology,2008,46(1):73-81.
    [50] LIU H,WANG X,WANG D,et al.Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge[J].Industrial Crops and Products,2011,33(1):84-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700