生物炭和氮肥配施提高■土团聚体稳定性及作物产量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Combination of biochar and nitrogen fertilizer to improve soil aggregate stability and crop yield in Lou soil
  • 作者:李伟 ; 代镇 ; 张光鑫 ; 刘杨 ; 韩娟
  • 英文作者:LI Wei;DAI Zhen;ZHANG Guang-xin;LIU Yang;HAN Juan;College of Agronomy, Northwest A&F University;
  • 关键词:生物炭 ; 氮肥 ; 土壤团聚体 ; ■土 ; 作物产量
  • 英文关键词:biochar;;nitrogen fertilzer;;soil aggregate;;Lou soil;;crop yield
  • 中文刊名:ZWYF
  • 英文刊名:Journal of Plant Nutrition and Fertilizers
  • 机构:西北农林科技大学农学院;
  • 出版日期:2019-05-25
  • 出版单位:植物营养与肥料学报
  • 年:2019
  • 期:v.25;No.128
  • 基金:陕西省重点研发计划重点项目(2018ZDXM-NY-002);; 公益性行业(农业)科研专项基金(201503121-09)资助
  • 语种:中文;
  • 页:ZWYF201905010
  • 页数:10
  • CN:05
  • ISSN:11-3996/S
  • 分类号:88-97
摘要
[目的]通过田间定位试验,探讨生物炭和氮肥配施对■土耕层土壤水稳性团聚体组成、稳定性、有机碳土层分布及冬小麦-夏玉米轮作体系下产量的影响,为生物炭在关中地区农业生产中的应用提供科学依据。[方法]本试验设置4个生物炭水平和2个氮肥水平,生物炭水平分别为0、1000、5000、10000 kg/hm~2,依次记为BO、B1、B2、B3;氮肥水平包括两季总氮量480 kg/hm~2(NT)和两季总氮量减半240kg/hm~2(NH),共组成8个处理。采集0—10 cm、10—20 cm土层土壤样品,利用TTF-100土壤团聚体分析仪湿筛获得5种粒级的团聚体(>2 mm、1~2 mm、0.5~1mm、0.25~0.5 mm、<0.25 mm),用>0.25 mm团聚体含量(R_(0.25))、平均重量直径(MWD)、几何重量直径(GMD)表示水稳性团聚体的的稳定性,并测定了不同粒级团聚体中有机碳的含量及小麦-玉米两季作物总产量。[结果]与不施生物炭(BONT、BONH)相比,施用生物炭的处理显著增加了>2 mm、1~2 mm粒级水稳性大团聚体的百分含量(P <0.05),两粒级增幅范围分别为3.5%~180.3%、9.4%~98.9%。施用生物炭10000 kg/hm~2(B3NT、B3NH)时,MWD、GMD和R_(0.25)增幅最高,分别增加了12.5%~112.5%、25.0%~65.7%、20.0%~65.0%。施用生物炭显著提高了土壤各粒级水稳性团聚体有机碳含量,与不施生物炭处理相比,> 2mm、1~2 mm、0.5~1mm和0.25~0.5 mm粒级团聚体有机碳含量增幅分别为6.3%~30.5%、0.2%~28.2%、0.2%~41.6%和4.6%~39.1%。与0—10 cm土层相比,10—20 cm土层氮肥减量降低了土壤团聚体的稳定性,而施用生物炭10000 kg/hm~2(B3NH)可改善土壤团聚体的稳定性,改变有机碳分布。在10—20cm土层,与B0NT处理相比,B0NH处理土壤水稳性团聚体的R_(0.25)、MWD、GMD显著下降,三者分别降低了79.2%、25.7%、30.0%,而B3NH与B3NT处理之间无显著差异。与B0NT相比,B0NH处理<0.25mm粒级微团聚体对土壤有机碳分配比例显著增加了17.4%,而B3NH处理与B3NT相比,<0.25mm粒级微团聚体对土壤有机碳分配比例无显著差异。此外,施用生物炭显著提高作物总产量,B2NT、B3NT和B3NH处理下两季作物总产量较高,分别较B0NT提高了27.0%、23.6%、27.9%,且三个处理之间无显著差异。从各指标相关分析可知,水稳定大团聚体的GMD与土壤全土有机碳以及两季作物总产量之间有着显著的正相关关系。[结论]生物炭配施氮肥显著提高了土壤水稳性大团聚体含量和团聚体稳定性,且提高小麦一玉米两季作物总产量。减施氮肥有利于有机碳向大团聚体中分配,供试条件下,生物炭10000 kg/hm~2配施氮肥240 kg/hm~2对提高■土耕层团聚体稳定性、土壤有机碳及两季作物总产量效果最佳。
        [Objectives]The influence of biochar and N fertilizer on soil water-stable aggregates,stability,organic carbon distribution and yields of winter wheat and summer maize in rotation system were studied.[Methods ]A six-years' experiment was conducted. Four levels of biochar amendments(0, 1000, 5000,10000 kg/hm~2, as B0, B1,B2, B3) and 2 levels of N fertilizer application(480 kg/hm~2, and 240 kg/hm~2, as NT,NH) were set in this experiment with 8 treatments(B0 NT,BINT, B2 NT,B3 NT,B0 NH,B1 NH,B2 NH,B3 NH). All samples(0-10 cm and 10-20 cm) were separated into five aggregate-size classes( > 2 mm, 1-2 mm, 0.5-1 mm, 0.25-0.5 mm, < 0.25 mm) by TTF-100 soil aggregate analyzer. The mean weight diameter(MWD), geometric mean diameter(GMD) and > 0.25 mm aggregate content(R_(0.25)) were used to indicate the stability of water-stable aggregates. The soil organic carbon(SOC) of aggregates and crop total yield were determined.[Results]Compared with BONT and BONN,the treatments with biochar significantly increased the content of SOC water-soil aggregates(P < 0.05) of > 2 mm and 1-2 mm by 3.5%-180.3% and 9.4%-98.9%,respectively. The values of MWD, GMD and R_(0.25) in B3 NT and B3 NH treatments were the highest, which increased by 12.5%-112.5%, 25.0%-65.7%, 20.0%-65.0%, respectively. At the same time, the contents of SOC in aggregates were significantly increased in biochar, and the macro-aggregates( > 0.25 mm) concentrated more organic carbon than micro-aggregates( < 0.25 mm). Compared with BONT and BONH, the content of SOC in soil aggregates > 2 mm, 1-2 mm, 0.5-1 mm, 0.25-0.5 mm were increased by 6.3%-30.5%,0.2%-28.2%, 0.2%-41.6%, 4.6%-39.1% respectively. Meanwhile, the soil aggregate stability and contributing rates of aggregates in SOC were lower in 10-20 cm than those in 0-10 cm, especially in NH treatments, while the higher application rate of biochar(10000 kg/hm2) could improve soil aggregate stability and change SOC distribution. In 10-20 cm soil layer,compared with BONT,the values of MWD,GMD and R_(0.25) in BONH was significantly reduced by 79.2%, 25.7%, 30.0% respectively, but those of B3 NH had no difference with B3 NT treatment. As for the contributing rates of aggregates in Lou soil SOC, the contributing rates of < 0.25 mm aggregates in SOC in BONH treatment was significantly increased by 17.4% compared with BONT, while B3 NH treatment had no difference with the counterpart of B3 NT. In addition, the crop total yields in different biochar treatments were increased, which were higher in B2 NT, B3 NT, B3 NH treatments compared to the BONT with the increment of 27.0%, 23.6% and 27.9% respectively, and there was no significant difference among the three treatments. The results of correlation analysis showed that there was a significant positive correlation between the GMD of water-stable macro-aggregate,the contents of SOC and crop total yield.[Conclusions ]Application of biochar and N fertilizer significantly improved the content of soil water-stable macro-aggregates and stability,which was conducive to increase SOC content and crop total yield. The optimal amounts for biochar and N fertilizer according to the comprehensive results should be 10000 kg/hm2 and 240 kg/hm~2, respectively.
引文
[1] Pan G X, Zhao Q G. Study on evolution of organic carbon stock in agricultural soils of China:Facing the challenge of global change and food security[J]. Advances in Earth Science, 2005, 20(4):384-393.
    [2]刘中良,宇万太.土壤团聚体中有机碳研究进展[J].中国生态农业学报,2011,19(2):447-455.Liu Z L, Yu W T. Review of researches on soil aggregate and soil organic carbon[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2):447-455.
    [3]史奕,陈欣,沈善敏.土壤团聚体的稳定机制及人类活动的影响[J].应用生态学报,2002, 13(11):1495-1498.Shi Y, Chen X, Shen S M. Mechanisms of organic cementing soil aggregate formation and its theoretical models[J]. Chinese Journal of Applied Ecology,2002, 13(11):1495-1498.
    [4] Xie J Y, Xu M, Ciren Q, et al. Soil aggregation and aggregate associated organic carbon and total nitrogen under long-term contrasting soil management regimes in loess soil[J]. Journal of Integrative Agriculture,2015, 14(12):2405-2416.
    [5]谢钧宇,杨文静,强久次仁,等.长期不同施肥下(?)土有机碳和全氮在团聚体中的分布[J].植物营养与肥料学报,2015, 21(6):1413-1422.Xie J Y, Yang W J, Qiangjiu C R, et al. Distribution of soil organic carbon and nitrogen in water-stable aggregates of manorial loess soils under long-term various fertilization regimes[J]. Journal of Plant Nutrition and Fertilizer,2015, 21(6):1413-1422.
    [6]陈晓芬,李忠佩,刘明,等.不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响[J].中国农业科学,2013, 46(5):950-960.Chen X F, Li Z P, Liu M, et al. Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of subtropical China[J].Scientia Agricultura Sinica,2013, 46(5):950-960.
    [7] Lehmann J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment,2007, 5(7):381-387.
    [8]金梁,魏丹,李玉梅,等.生物炭与化肥配施对土壤主要物理特性的影响[J].沈阳农业大学学报,2017, 48(4):424-430.Jin L, Wei D, Li Y M, et al. Effect of biochar combined with chemical fertilizers on soil major physical properties[J]. Journal of Shenyang Agricultural University, 2017, 48(4):424-430.
    [9]宋大利,习向银,黄绍敏,等.秸秆生物炭配施氮肥对潮土土壤碳氮含量及作物产量的影响[J].植物营养与肥料学报,2017, 23(2):369-379.Song D L, Xi X Y, Huang S M, et al. Effects of combined application of straw biochar and nitrogen on soil carbon and nitrogen contents and crop yields in a fluvo-aquic soil[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2):369-379.
    [10] Sun F, Lu S. Biochars improve aggregate stability, water retention and pore-space properties of clayey soil[J]. Journal of Plant Nutrition and Soil Science,2014, 177(1):26-33.
    [11] Zhang M, Gong C, Hao F, et al. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China[J]. Environmental Science and Pollution Research,2017, 24(11):10108-10120.
    [12] Liu X H, Feng P H, Zhang X C. Effect of biochar on soil aggregatesin the Loess Plateau:results from incubation experiments[J].International Journal of Agriculture&Biology, 2012, 14(6):975-979.
    [13] Dong X, Guan T, Li G, et al. Long-term effects of biochar amount on the content and composition of organic matter in soil aggregates under field conditions[J]. Journal of Soils&Sediments, 2016, 16(5):1481-1497.
    [14]王勇,张建辉,张泽洪,等.长期向上耕作对坡耕地土壤水稳性团聚体的影响[J].水土保持研究,2016, 23(1):44-49.Wang Y, Zhang J H, Zhang Z H, et al. Impacts of long-term upslope tillage systems on soil water-stable aggregates on a steep hill slope[J].Research of Soil and Water Conservation, 2016, 23(1):44-49.
    [15] Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2):141-163.
    [16]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000. 205-227.Lu R K. Soil and agro-chemistry analysis method[M]. Beijing:China Agricultural Science and Technology Press, 2000. 205-227.
    [17] Bavel C H M V. Mean weight-diameter of soil aggregates as a statistical index of aggregation[J]. Soil Science Society of America Journal, 1950, 14:20-23.
    [18] Bronick C J, Lal R. Soil structure and management:a review[J].Geoderma, 2005, 124:3-22.
    [19] Du Z L, Zhao J K, Wang Y D, et al. Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system[J]. Journal of Soils and Sediments,2017, 17(3):1-9.
    [20] Li Q, Jin Z, Chen X, et al. Effects of biochar on aggregate characteristics of upland red soil in subtropical China[J].Environmental Earth Sciences, 2017, 76(10):372.
    [21] Bossuyt H, Six J, Hendrix P F. Protection of soil carbon by microaggregates within earthworm casts[J]. Soil Biology and Biochemistry, 2005, 37(2):251-258.
    [22] Brodowski S, John B, Flessa H, et al. Aggregate-occluded black carbon in soil[J]. European Journal of Soil Science, 2006, 57(4):539-546.
    [23]吴成,张晓丽,李关宾.黑碳制备的不同热解温度对其吸附的影响[J].中国环境科学,2007, 27(1):125-128.Wu C, Zhang X L, Li G B. Effects of paralytic temperature of phenanthrene on its adsorption to black carbon[J]. China Environmental Science,2007, 27(1):125-128.
    [24] Hardie M, Clothier B, Bound S, et al. Does biochar influence soil physical properties and soil water availability?[J]. Plant and Soil,2014, 376(1-2):347-361.
    [25] Freixo A A, Machado P, dos Santos H P, et al. Soil organic and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southern Brazil[J]. Soil and Tillage Research,2002, 64(3):221-230.
    [26]李江舟,代快,张立猛,等.施用生物炭对云南烟区红壤团聚体组成及有机碳分布的影响[J].环境科学学报,2016, 36(6):2114-2120.Li J Z, Dai K, Zhang L M, et al. Effects of biochar application on soil organic carbon distribution and soil aggregate composition of red soils in Yunnan tobacco planting area[J]. Acta Scientiae Circumstantiae, 2016, 36(6):2114-2120.
    [27]章明奎,Walelign D Bayou,唐红娟.生物质炭对土壤有机质活性的影响[J].水土保持学报,2012,26(2):127-131.Zhang M K,Walelign D B, Tang H J. Effects of biochar's application on active organic carbon fractions in soil[J]. Journal of Soil and Water Conservation, 2012, 26(2):127-131.
    [28] Ouyang L, Yu L, Zhang R. Effects of amendment of different biochars on soil carbon mineralization and sequestration[J]. Soil Research,2014, 52(1):46-54.
    [29] Yuan C, Sheng G, Chiou C T, et al. Compositions and absorptive properties of crop residue-derived chars[J]. Environmental Science and Technology, 2004, 38(17):4649-4655.
    [30] Six J, Elliott E T, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 2016, 62(5):1367-1377.
    [31] Warnock D D, Lehmann J, Kuyper T W, et al. Mycorrhizal responsesto biochar in soil concepts and mechanisms[J]. Plant and Soil, 2007,300(2):9-20.
    [32]黄超,刘丽君,章明奎.生物质炭对红壤性质和黑麦草生长的影响[J].浙江大学学报(农业与生命科学版),2011,37(4):439-445.Huang C, Liu L J, Zhang M K. Effects of biochar on properties of red soil and ryegrass growth[J]. Journal of Zhejiang University(Agriculture&Life Science Edition), 2011, 37(4):439-445.
    [33]袁晶晶,同延安,卢绍辉,等.生物炭与氮肥配施对土壤肥力及红枣产量、品质的影响[J].植物营养与肥料学报,2017, 23(2):468-475.Yuan J J, Tong Y A, Lu S H, et al. Effects of biochar and nitrogen fertilizer application on soil fertility and jujube yield and quality[J].Journal of Plant Nutrition and Fertilizer, 2017, 23(2):468-475.
    [34]袁晶晶,同延安,卢绍辉,等.生物炭与氮肥配施改善土壤团聚体结构提高红枣产量[J].农业工程学报,2018, 34(3):159-165.Yuan J J, Tong Y A, Lu S H, et al. Biochar and nitrogen amendments improving soil aggregate structure and jujube yields[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(3):159-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700